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1 Introduction

As the Dutch physicist Walter Lewin wisely say it: “Any measurement
that you make, without any knowledge of the uncertainty, is meaningless”.
It is true for experimental measurement as well as for theoretical models. As
precise and reliable they can be, experimental data and models are always
only an approximation of the reality and, therefore, the di↵erence between
data or models predictions on the one hand and the reality on the other
hand have to be estimated to make them meaningful. However, while the
estimation of uncertainties for experimental measurements became the norm
a century ago, models uncertainties evaluation are much more recent and
was a long time limited to statistical uncertainties.

The recent improvement of computer power in the last decades brought
new tools for model uncertainty quantification, especially for Monte Carlo
(MC) models. These models are of the highest importance in nuclear physics
as measuring all required nuclear data is impossible for all the various fields
of application (e.g., fusion technology, medical hadron therapy, cosmogenic
transmutation, etc.). Models able to predict the relevant data are needed
to design instruments, radioprotection equipments, or to analyse data. The
critical aspects in nuclear physics initiated a very early study of model un-
certainties, which is commonly called nuclear data evaluation. Considering
the wide range of applications of nuclear models and their relevance for soci-
eties, it is obvious that model calculations must be as precise and reliable as
possible. This means the bias, the di↵erence between the estimator and the
true value of an observable, and the uncertainties of model must be estimated
precisely for a proper use of these nuclear model.

The majority of methods proposed for the study of model uncertainties
are based on Bayesian statistics. The Bayesian statistics is a general frame-
work for inference of probabilities with a limited knowledge of the relevant
information. It is normally used to attribute an a posteriori (density of)
probability to di↵erent possibilities based on incomplete measures. This al-
lows to estimate the likelihood of a result as well as its uncertainties.

In the 20th century, the nuclear data evaluation was mostly used in the
energy domains which are relevant for nuclear power plant. Namely, nuclear
data evaluations focussed on the energies below 20 MeV. This led to the
creation of nuclear data libraries, which are basically tables of (double dif-
ferential) cross sections. At present, new type of project are envisaged with
operating energies much higher. As an example, the Multi-purpose hYbrid
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Research Reactor for High-tech Applications (MYRRHA) [1] project will op-
erate at energies up to 600 MeV. Therefore, the new (and large) energy range
must be carefully studied too.

During the last Nuclear Data projects [2, 3, 4], an important e↵ort has
been devoted to the development, improvement and validation of the high
energy nuclear models, in particular the INCL/ABLA combination of models
that are now widely used for high energy applications.

In the CHANDA project [2], for the first time, a study has been conducted
to investigate a possible methodology based on the Bayesian framework for
quantifying the uncertainties linked to parameters in high energy models and
propagating those uncertainties in MC transport codes. In this project, it is
proposed to investigate if the methodology can be applied to a large number
of parameters of INCL within a reasonable computational time.

In this study, we are interested in the model combination of the intranu-
clear cascade model INCL++6 and the de-excitation model ABLA++. In
combination, they are able to simulate spallation reactions, which are high-
energy nuclear reactions, in which a target nucleus is hit by an incident
particle of energy greater than some tens of MeV.

Noteworthy, the objectives of this study (see section 2) are specific to nu-
clear evaluation with the combination INCL/ABLA. However, the method-
ology we developed to study our specific case is a general framework and
can be apply to a large variety of model. In section 3, the limits of our ap-
proach will be discussed in the general case for a comprehensive description
of cases where the method could be apply. Section 4 details the treatment of
experimental data required before the use of our algorithm. Next, section 5
illustrates our methodology in some basic cases created on purpose. Then,
the methodology is applied on INCL/ABLA with the use of real experimental
data in section 6. Finally, we discuss the outlook of this work in section 7.

2 Objective

Task 4.5 of the European project SANDA (Supplying Accurate Nuclear
Data for energy and non-energy Applications) called “High-energy model un-
certainties” aims at estimating model bias as well as model parameters bias
in the specific case of INCL/ABLA for energies above 20 MeV. The estima-
tions of the model bias and of the parameters bias are actually orthogonal.
One can estimate the model bias without optimising the model parameters
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and vice versa.
In the CHANDA framework, we already validated the methodology based

on the Bayesian approach, which estimates the bias of the model combina-
tion INCL/ABLA [5]. Doing so, we were able to demonstrate that we can
estimate not only the bias of the model but also the uncertainties for specific
observables. This has been done explicitly for inclusive double-di↵erential
neutron spectra from various proton induced reactions. Therefore, it has
been decided to focus here on the parameters optimisation.

Model bias is, by definition, the expected di↵erence between model pre-
dictions and the true values of these observables (e.g., neutron multiplicity,
angular distribution, mass distribution, etc.). Equally, model parameters
bias is the expected di↵erence between the parameters value provided to the
model and their true values. However, the “true” values of parameters (when
it is meaningful) are not accessible. Therefore, we have to consider that ex-
perimental data are the best estimations of the truth to characterise the
model bias as well as the parameters bias. This is a reasonable consideration
as there is not reason a priori for the experimental data to overestimate the
reality nor to underestimated it. In other words, experimental data are the
best estimation a priori of the reality we have and are a priori unbiased.
With an equation, it can be written:

Bias = E(�exp � �true) = 0, (1)

with �exp experimental data and �true the true values of the corresponding
observables.

One conceptual issue when we aim at measuring parameters bias is that
the definition of the bias is meaningless when these parameters are not “phys-
ical” parameters. As an example, particles masses are “physical” parameters,
while parameters used in INCL to determine when the model should stop run-
ning are model dependent parameters. Additionally, the estimation of the
parameters bias will be carried out within the Bayesian framework, which
assume the combination INCL/ABLA is a perfect model. In other words, the
Bayesian procedure expects the model to perfectly reproduce the reality if
the parameters of the model are the best ones. However, as says the famous
quote attributed to the British statistician George E.P. Box: “All models are
wrong, but some are useful”. INCL/ABLA, as any model, cannot be perfect.
This is why the procedure will not search for the true value of the model
parameters but for the optimal parameters within the context of the model
considered and of the observables studied.
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On another hand, the uncertainties of the model parameters will also be
evaluated. These uncertainties are useful as they provide information about
the error propagation in the model. Small uncertainty for a given parameter
would mean that a small modification significantly modify model predictions.
Reciprocally, large uncertainties would mean that the parameter value does
not play a major role on the model predictions.

In this study, our objectives are twofold. First, we aims at demonstrating
the feasibility of our approach in real cases using the model combination
INCL/ABLA. Second, we want to study the possibilities, the di�culties, and
the limits of our procedure both for the evaluation of the optimal parameters
of a model and for the evaluation of the corresponding uncertainties.

3 Methodology

As mentioned in section 2, the objective of this study is to estimate the
optimal model parameters and the uncertainties associated to these param-
eters, which would provide information about the error propagation in the
model. The related question of the model bias estimation is orthogonal to
this study and has already been addressed in the previous study carried out
by Schnabel within the CHANDA framework [5] and will not be further
discussed.

The methodology we developed is based on the Generalised Least Squares
(GLS) method [6], which is an important technique in nuclear data evaluation
as it is used to estimate the unknown parameters in a linear regression model
with a potential high degree of correlation between the observables. The GLS
is a method of regression similar to the common �

2 but the correlations are
taken into account and the model parameters are treated as extra data, which
therefore limits the risk of unphysical prediction for the parameters.

Our approach is divided in two main parts.
In a first step, we want to know what are the optimal parameters for

the model. In other words, we want to estimate what are the parameters
which will result in the best model prediction. Our approach being based
on the Bayesian statistics, it takes both into account the reproduction of the
experimental data and the respect of the a priori knowledge on the parame-
ters. This is realised using the Expectation Maximisation (EM) method [7],
which is an iterative algorithm which finds the parameter set maximising
the likelihood of a model. In other words, the EM minimise the di↵erence
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between the model prediction and the experimental data taking into account
the experimental uncertainties and the correlations.

In the second step, we want to know what are the uncertainties associated
to each parameter as it provides information about the error propagation. In
this respect we developed an approach based on the Gibbs sampling, which is
suitable for stochastic model. With this approach, we sample parameters set
in a multivariate normal distribution using the posterior covariance matrix
of the model. The distribution of the parameters at the end of this second
step allows to determine the uncertainties of these parameters.

It is important to mention that, if the model have di�culties to reproduce
some of the experimental data with respect to their experimental error bars,
the algorithm will focus on these data points and neglect the others. This is
why the selection of experimental data to be included in the analysis as well
as a careful study of their uncertainties must be carried out before trying
to optimise the model parameters. In other words, the experimental data
included in this approach have to be reasonably reproducible by the model.
Otherwise, these toxic data points may make this approach highly ine�cient.

3.1 Optimisation algorithm

Here, we will describe the use of our algorithm. As mentioned before, the
algorithm we developed for the optimisation of parameters is divided in two
steps: the Expectation Maximisation (EM) and the Gibbs sampling. The
first step aims at evaluating the optimal parameter set for the model and the
second step aims at determining the corresponding uncertainties.

The two steps are both a recursive algorithm. The number of iterations
for both methods are free parameters, which can be fixed by the user. For
the EM, it must be large enough to converge to the optimal parameters set.
For the Gibbs sampling, it must be large enough to estimate the variance
of the parameters with the distribution obtained. On the other hand, the
computational time increases linearly with the number of iterations. There-
fore, the minimum number of iterations required might range from a dozen
to a hundred for the EM and from some hundreds to some thousands for the
Gibbs Sampling.

The main idea of the EM is the following. We start with a model (here
INCL/ABLA), experimental data ~�exp and, a set of parameters ~pref , which
represents the best estimation for these parameters a priori (i.e., without
knowledge about ~�exp). Here, the model is seen as a function taking a vector
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as input (the parameters) and with a vector as an output (the observables)
corresponding to the experimental data. This means that the dimension of
the model predictions, M(~p), must fit the dimension of ~�exp. In our specific
case of INCL/ABLA, it is done with an additional layer above the standard
version of the model which extracts the experimental setups (projectiles,
targets, energies, angles, etc.) from the experimental data provided, runs
the INCL/ABLA simulations with the same setups and, using the parameter
set ~p, extracts the observables corresponding to the experimental data from
the ROOT files produced and, finally, produces a vector matching ~�exp.

Then, we enter a loop to improve the set of parameters ~pref . After the i-th
loop, the improved set of parameters is called ~pi. With the knowledge of how
the model varies locally, given by the Jacobian of the model in ~pi, and the
di↵erence between the model prediction M(~pi) and the experimental data
~�exp, one can determine what is the best set of parameter ~pi+1 to minimise the
di↵erence between the model and the experimental data, assuming the model
is linear between ~pi and ~pi+1, the optimal parameters. Since the model has no
reason to be linear, the new set of parameters will likely not be the optimal
parameters set. However, if the model is not completely erratic between
~pi and ~pi+1, the linearisation of the model can be seen as an acceptable
approximation of the model. Therefore, the new set of parameter ~pi+1 will
certainly be an improvement with respect to ~pi. Then, we can reevaluate
the local Jacobian and the real model prediction in ~pi+1 and restart the loop
until convergence of ~p.

Explicitly, the EM is executed as follows. At the beginning of each loop,
we linearise the model with a Taylor approximation in ~pi:

~Ti(~p) = M(~pi) + Jpi ⌦ (~p� ~pi), (2)

with the Jacobian matrix Jpi of the model evaluated in ~pi:

Jpi =
dM(~pi)

~dpi

. (3)

We introduce the matrix Ji:

Ji =

✓
In⇥n Jpi

; Im⇥m

◆
, (4)

with n the number of experimental data, m the number of parameter and, I
the identity matrix.
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The definition of Ji allows to define the matrix of regression as:

⌃̃i = Ji ⌃ J
T
i =

✓
⌃̃DDi ⌃̃DIi

⌃̃IDi ⌃̃IIi

◆
, (5)

with ⌃̃DDi of dimension n⇥ n, ⌃̃IIi of dimension m⇥m, and ⌃ the covari-
ance matrix of the joint distribution of the experimental data and the input
parameters:

⌃ =

✓
⌃exp ;
; ⌃p

◆
, (6)

with ⌃exp and ⌃p the covariance matrix of the experimental data and of the
parameters, respectively. The ⌃ matrices might be non-diagonal in case of
correlation between the experimental data or between the parameters.

Then, we can evaluate an improved set of parameter using the formula
from the GLS method:

~p
0 = ~pref + ⌃̃IDi

⇣
⌃̃DDi

⌘�1 h
~�exp � ~Ti(~pref )

i
. (7)

The demonstration of this formula is displayed in Appendix A.
This formula would provide directly the optimal parameters (~popti) for

the model in case of a linear model. However, in the general case, ~p
0 is

only an approximation of ~popti. The quality of this approximation is directly
correlated to the linearity of the model between ~pi and ~popti. Even if the
model is not linear, ~p 0 is likely an improvement with respect to ~pi. Then, we
can restart the procedure with ~pi+1 = ~p

0. This will improve the quality of
the GLS hypothesis of a linear model between ~pi and ~popti and therefore, the
precision of Equation 7. If the model is not completely erratic, we expect de
di↵erence |~popti� ~pi| to decrease exponentially with the number of iterations.

In the case of a stochastic model, the hypothesis of a linear model between
~pi and ~popti might be reasonable as long as the expected di↵erence of the
model predictions between ~pi and ~popti dominates the stochasticity. However,
as ~pi approaches ~popti, the formula becomes less and less valid. Therefore, we
expect an initial quick convergence as ~pi is far form ~popti, then the ~pi will start
oscillating around ~popti. In order to evaluate ~popti, we then need to average
the values of ~pi along the oscillating phase. This will remove the e↵ect of the
stochasticity.

In the second phase of the algorithm, the Gibbs sampling, we want to sam-
ple ~pi around ~popti using a multivariate normal distribution with the posterior
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covariance matrix ⌃i in order to evaluate the distribution of ~p and therefore,
to measure the uncertainties and the correlations of the parameters:

~pi+1 = N (~p 0
,⌃i+1). (8)

For each loop of the Gibbs sampling, ~p 0 is re-approximated using Equation 7,
which means we process one loop of the EM within each iteration of the Gibbs
sampling, and the covariance matrix ⌃i+1 is an updated version of the initial
parameters covariance matrix (see Appendix A for details), which includes
the variance of the experimental data and the error propagation through the
model:

⌃i+1 = ⌃p � ⌃̃IDi

⇣
⌃̃DDi

⌘�1

⌃̃DIi . (9)

This Gibbs sampling is well suited in the case of stochastic models since
the ~p 0 used is re-approximated in each loop and its dispersion over the loops
allows to integrate the stochasticity of the model in the uncertainties of pa-
rameters. In addition to the dispersion of ~p 0, the sampling uses the updated
covariance matrix ⌃i+1, which contains the information of the a priori knowl-
edge on the parameters and the experimental data and also about the error
propagation through the model. These uncertainties (and the correlations
between the parameters) can be obtained with the covariance matrix of the
multivariate distribution of ~pi obtained with the Gibbs sampling. This allows
to evaluate the parameters uncertainties in the Bayesian framework taking
into account the a priori uncertainties of this parameters as well as the other
relevant uncertainties, which are the error propagation through the model,
the stochasticity of this model (which depends on the statistic used) and, the
experimental data error bars. On the other hand, if we do not want to inte-
grate the information about the stochasticity of the model in the parameters
uncertainties, we can average the covariance matrix ⌃i over the iterations.
In this case we would obtain parameters uncertainties with only the consid-
eration of a priori uncertainties of this parameters, a priori uncertainties of
experimental data, and the error propagation through the model.

3.2 CPU Optimisation

CPU Optimisation tricks has been used for the computation.
First, the inversion of the matrix ⌃̃DDi being very CPU consuming when

using a large amount of experimental data, the Woodbury matrix identity is
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used:
⇣
⌃̃DDi

⌘�1

=
�
⌃exp + Jp⌃pJ

T
p

��1

= ⌃�1
exp � ⌃�1

exp Jp

�
⌃�1

p + J
T
p ⌃

�1
expJp

��1
J
T
p ⌃

�1
exp. (10)

When no correlation is taken into account, the ⌃ matrices being diagonal,
the inversion is straightforward. When there are correlations, there are often
limited to a small group of data and, inverting the matrix is therefore still
very e↵ective. Then, the problem of a large non-diagonal matrix inversion
becomes a problem of large matrices multiplications, which is faster and can
easily be parallelised.

Second, the Jacobian should theoretically be computed for each loop.
However, it would be highly CPU ine�cient as the Jacobian does not change
drastically between two loops while it could requires a significant CPU time
to be estimated. Therefore, at the end of each loop, we control if the Jaco-
bian is still valid and, if not, it is revaluated. This is done with a comparison
of M(~pi) (which is evaluated in each loop for the needs of the Taylor ap-
proximation) and Tj(~pi), the Taylor approximation made the last time the
Jacobian has been evaluated. If the two prediction in ~pi di↵ers by less than
a predefined value, we consider the Jacobian is still valid. The condition for
reevaluation is defined as a function of the number of experimental data, the
number of parameters to be optimised, and the CPU time required by the
model to evaluate the Jacobian itself.

Third, as we compile values express in di↵erent units in the ⌃ and, by
extension, the ⌃̃i matrices, it is not rare to have many orders of magnitude
of di↵erence between the di↵erent elements of these matrices. This can in-
troduce errors due to the limited precision of computers while multiplying or
inverting the matrices. In such a case, it might be useful to rescale the output
of the model and the experimental data. In other words, we can choose to
optimise the parameters for the model M0 = A⇥M using the experimental
data ⌧

0 = A ⇥ ⌧ with A an arbitrary diagonal matrix. In such a case, the
experimental error bars must also be updated but not the parameters. Pro-
ceeding this way is perfectly equivalent to optimise the parameters for the
model M using the experimental data ⌧ .
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3.3 Limits of the approach

In our case with INCL/ABLA, there are three main limits for the use of
our method.

First, one of the main challenge with nuclear data evaluation is the mas-
sive amount of observable to reproduce. One of the crucial assumption con-
cerns the uncertainties of experimental data sets. Including automatically a
large number of experimental data sets into the Bayesian procedure always
brings the risk of some data sets having too optimistic uncertainty speci-
fications. It is often the case with old experimental data when systematic
errors were not evaluated or roughly fix to 10% per convention. As an exam-
ple, some of the experimental data we included in our study were provided
with relative uncertainties below 1%. In this case, the Bayesian procedure
attributes a very high importance to this data while other data measured in
experiment with a more rigorous evaluation of the uncertainties will under
contribute to the final results. Therefore, a careful study of the experimental
data included in the Bayesian procedure must be carried out in order to use
realistic (or, at least, consistent) uncertainties for every set of data. This is
further discussed in section 4.

Similarly, the over experimental measurement of some observables will
induce an over fit of these data as each data point is considered individually
and not as a set since they are almost never provided with their correlations.
In other words, the more data points an experiment has, the more it will
influence the final result of our study. For example, the neutron production
cross section has been very well studied with respect to the proton produc-
tion cross section. Therefore, if the two data sets are included in the same
study, the approach will put a lot of e↵ort to reproduce the experimental
neutron cross sections as they are numerous while the proton cross sections
will contributes marginally.

The second main issue is the stochasticity of the model used. The en-
ergy considered (above 20 MeV) is not described properly with deterministic
model as the number of possibilities increase exponentially with the energy.
MC models become necessary for these energies but it comes with the usual
balance between precision and computation time. However, whatever the
statistic, two simulations with the same initial state but di↵erent seeds will
give di↵erent results. In order to avoid that the a posteriori probability as-
sociated to a parameter set varies too much from one run to another, the
statistics must be carefully chosen in order to obtain a good balance between
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CPU time and precision. This might become complex in a case with a large
number of experimental data requiring very di↵erent statistics to be properly
estimated by the model.

The last, but not least, issue: model deficiencies are not taken into ac-
count. Parameters can be optimised within the context of the model but the
approach does not provide direct information about model deficiencies. This
means two things: First, if the model deficiencies forbid to reproduce the ex-
perimental data whatever the parameters set used, the optimal set estimated
will be unsatisfactory. As an example, if we try to optimise the parameter of
a toy model where the data to be reproduced are distributed as a quadratic
function and the toy model allows only linear function, the approach will op-
timised the parameter to minimise the bias but, despite the parameter will
be optimal, the model will not be able to reproduce the quadratic shape of
experimental data (see ref. [8], section 3.2). Second, as the approach min-
imises the variance, which evolves with the square of the di↵erence between
experimental data and the model predictions, a minor improvement in a re-
gion where the model is highly deficient will be seen as great improvement,
while a large increase of the di↵erence between experimental data and the
model predictions in regions where the model reproduce properly the exper-
imental data will be seen as a minor deterioration of the model. In other
words, if we try to optimise the model with experimental data with part of
them in deficient regions of the model and another part in e�cient regions of
the model, the algorithm will primarily improve the model prediction in the
worst regions regardless of the e↵ects on the model prediction in the good
regions. In order to be complete, the quantification of the reliability of the
model hypotheses should be done in a “global” study.

These limitation must always be kept in mind for the conclusion of the
method.

4 Experimental data treatment

As mentioned in subsection 3.3, including a large amount of experimental
data coming from a large number of experiences, teams, and decades, is
very problematic as the quality of these data highly di↵ers from each others.
Actually, the main problem with experimental data is not their accuracy but
the experimental error bars, which are crucial in our analysis as they define
the ⌃ matrix. Sometimes, these error bars are not representative of the real
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accuracy and precision of the experimental measurement. Additionally, the
error bars were not evaluated the same way for all of the experimental data.
Some can be pure statistical error bars while other includes systematics,
themselves implying some arbitrary evaluation of the experimental setup.
It appears clearly that some error bars provided are badly evaluated when
two (or more) experiments exclude each others by several �. This issue has
been partly addressed by Schnabel within the CHANDA framework with
the possibility to rescale automatically experimental error bars when several
data set are available for the same observables [9]. However, most of the
reaction studied have only one set of experimental data available. Therefore,
we needed a more general approach for cases where only one set of data is
available for an observable. Unfortunately, to our knowledge, there is no
mathematical approach allowing to provide systematic error bars for a set of
experimental data based only on the experimental data themselves.

The only way to provide systematics when only one set of data is available
it to make an arbitrary estimation of them from the knowledge of the exper-
imental setup. In our case, it is not reasonable to reprocess the systematic
error bars of all sets of data included in our analysis. Therefore, we propose
here an alternative approach taking the error bars provided with the exper-
imental data and applying an arbitrary algorithm to normalise those error
bars. This algorithm rules that experimental data with error bars too small
to be realistic should be treated as experimental data with large uncertainties
as there were badly evaluated. Additionally, the confidence we have in those
data decreases with the increasing unlikelihood of the error bars provided.
Therefore, the algorithm uses arbitrary thresholds under which uncertainties
are rescaled up to predefined levels. On the other hand, we decide to trust
the realistic uncertainties provided by other experiments regardless of the
di↵erences of uncertainties evaluation.

In practice, all the relative uncertainties below 1% are considered as very
unrealistic and are rescaled to 30%. Those between 1% and 5% are con-
sidered as unrealistic and rescaled to 20%. Those between 5% and 10% are
considered as realistic but likely underestimated and are rescaled to 10%. Fi-
nally, relative uncertainties above 10% are considered as properly estimated
and are conserved as there are. Remark that this approach forbids relative
uncertainties to go below 10% whatever the e↵orts put in the reduction of
systematic errors.

This approach is needed for a proper execution of our algorithm but it
has to be kept in mind that this treatment of experimental data is arbitrary.
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However, when the amount of experimental data is large, our tests showed
that modifying these thresholds and the rescaling do not significantly modify
our results as long has the new error bars can be considered as realistic.

5 Toy models

In order to validate the methodology without the limitations on the ex-
perimental data mentioned above, we developed various toy models for which
we control the “experimental data” we use. In this section, they are used to
illustrate the parameter optimisation procedure. This will also highlight rel-
evant considerations for the data analysis. Note that we always start our toy
models with very bad values for the initial parameter in order to emphasis
the expected behaviour of our algorithm.

5.1 Toy model 1: Basic model

In Figure 1, an example of parameters optimisation is displayed in the
context of a non-stochastic model f . Here the model takes as input two
parameters p1 and p2 and makes the product. We start with a priori values
p1 = �3± 1, p2 = 4± 1, and the “experimental” observation for f(p1, p2) is
15± 2. We do not consider a priori correlation between p1 and p2.

Applying our algorithm, one can see the quick convergence of the param-
eter set (p1, p2) in Figure 1 thanks to the EM. The convergence happens in
(2.00, 5.75). We remark that, after the convergence f(p1, p2) ' 11.5 6= 15.
This is due to the parameters variances, which forbid the parameters to be-
come unreasonable with respect to their a priori estimation. In real cases,
this feature will avoid model parameters to become unphysical.

In the second stage of the algorithm, one can see in Figure 1 the Gibbs
sampling exploring the possible parameters sets ~pi around the optimal set,
which has been estimated with the EM. The x and y width of the zone ex-
plored depends on the variance of p1 and p2 while the correlation between
the parameters depends, of course, on their real correlation on the results
but also on the variance of the experimental datum. This dependence on
the experimental error bar is due to the fact that the likelihood for a set of
parameter decreases quickly when the model prediction drift apart of exper-
imental data when the experimental error bars are smalls. Therefore, these
small experimental error bars will reduce the size of the acceptable domain in
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Figure 1: Example of parameters optimisation in a non-stochastic model.
In red, the parameters sets along the Expectation Maximisation. In blue, the
parameters sets along the Gibbs sampling. The black oval is the 1� of the
multivariate normal distribution used to fit the parameter set distribution
obtained during the Gibbs sampling.

the parameters space and modify the dispersion of the parameter sets along
the Gibbs sampling. The uncertainties for the parameters are provided by
the covariance matrix of the distribution obtained with the Gibbs sampling.

5.2 Toy model 2 : Stochasticity

With the second toy model, we make the model slightly more complex
with the addition of stochasticity in the results faking Monte Carlo processes.
Here, the second toy model is a copy of the first toy model (f(p1, p2) = p1⇥p2)
but with a Gaussian noise with a standard deviation of 1 above the output.

One of the main issue now is to evaluate the Jacobian since it is perturbed
by the Gaussian noise. In the general case, the d~pi used to evaluate the
Jacobian should not be too small in order not to be dominated by the noise
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Figure 2: Same as Figure 1 with stochasticity.

but should also not be too large in order to get the local Jacobian and not a
Jacobian averaged on a large scale.

The parameter set evolution is depicted in Figure 2. Note that running
several times the algorithm would results in slightly di↵erent result due to
the stochasticity of the model.

The second main problem is to know when the EM converged since the
algorithm keeps modifying the parameters to compensate the stochasticity
after the “convergence”. Here, we have to draw a figure of merit along the
optimisation and consider convergence is reached when the goodness of the
model does not increase any more. Then, we can run several additional
iterations in order to make the deconvolution between the noise and the
optimal value for the parameters. This is actually optional as the Gibbs
sampling also sample around the optimal parameter.
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6 Parameter optimisation

The parameter optimisation might be very CPU intensive with modern
model as INCL/ABLA. Especially in the case of “rare” observables. However,
the principle remains the same as described in section 5.

In this study, we studied two di↵erent types of situation. First, a very
favourable situation, but not fully physically meaningful, in order to demon-
strate the feasibility and the capabilities of our method. Second, some cases
representative of our long term objectives, in order to study the limits and
di�culties. Our knowledge about the limits of our method and the di�culties
we faced have been detailed in subsection 3.3.

6.1 Favourable case

For the first study, we chose the very favourable case of the subthresh-
old K

+ production as described by the experience carried out at LINP [10].
This case is very favourable for two main reasons. First, the subthreshold
K

+ production is a very specific phenomenon, which implies just a few pa-
rameters. Additionally, there is a limited amount of experimental data (70
data points), all coming from the same experimental set up. This highly
simplify both the mandatory analysis of the experimental data mentioned in
subsection 3.3 and the results analysis. Second, the experimental data are
very badly reproduced by INCL [11], which means there is a large room for
improvement. Therefore, the figure of merit for this analysis should be very
clear for interpretation.

On the other hand, this analysis have two limitations. First, the phe-
nomenon studied is a very rare event with cross sections of the order of a
few nanobarns. Additionally, each experimental data point corresponds to a
di↵erent target and projectile energy, which requires individual calculations.
Therefore, it is very CPU intensive to run INCL for this experiment. This
forces us to limit the number of experimental data points used in our anal-
ysis to 24 representative points. Second, the parameters involved here have
impact on other observables, which are not used in our analysis. Therefore,
our approach completely neglect the very likely deterioration of these other
observables when we will change the aforementioned parameters. Therefore,
this first study is not physically complete. It will be a proof of concept
showing that the approach we developed is functional for complex model like
INCL.
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Figure 3: Figure of merit showing the evolution of the �
2
/DoF after each

iteration. Iteration 1 corresponds to the initial version of INCL.

For this experience, we decided to consider four parameters to be opti-
mised. Namely, we consider 3 scalars aNN , a⇡N , and a�N , which are multi-
plying factors applied to the strangeness production cross sections for NN ,
⇡N , and �N ! K + X reactions, respectively, and a fourth parameter,
which is the Fermi momentum used in INCL.

Figure 3 depicts the evolution of the �
2
/DoF after each iteration of the

algorithm as described in subsection 3.1. Here we only used the expectation
maximisation due to CPU time restrictions. This calculation took 7 days
using 20 cores. This means we will not be able to provide uncertainties on
the parameters. After only a few iterations, one can see a huge improvement
of the �2

/DoF going from more than 5000 to roughly 50. The initial value of
⇠ 5300 is explained both by the poor initial description of the experimental
data (factor 5 in average) and by the rather small experimental error bars
(down to 3%). Regardless of the absolute value of the �2

/DoF , the algorithm
succeeds in improving the description of the experimental data by INCL as
illustrated in Figure 4. On this figure, one can see that we started from
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a model highly overestimating the experimental data and we ended with a
pretty fair description of these data.

Figure 4: LINP experimental data [10] compared to INCL Before/After
optimisation for (Top) Lead and (Bottom) Beryllium.

This clearly demonstrates the ability of our algorithm to optimise the
parameters of a complex model like INCL.
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6.2 Double di↵erential neutron case

In a second step, we decided to apply our algorithm to the most important
observables for the INCL/ABLA model applications: the double di↵erential
neutron cross section (DDNXS). Here, the parameters which can play a role
are much more numerous than in the previous study. One can mention almost
every single elementary double di↵erential cross section (e.g., NN ! NN ,
⇡N ! N⇡⇡, �N ! NN , etc.), parameters dealing with the structure of the
nucleus, the parameters ruling clustering, the freezing-out temperature in
ABLA, etc. Almost everything matters for such a general feature. Here, it is
not realistic in term of CPU to optimise every single parameter which might
play a role in the DDNXS. It is therefore necessary to choose the parameters
to be optimised. In our case, we chose to optimise the parameters for the
N� ! NN cross section, the stopping time of the simulation, and the
Fermi momentum. These parameters with enough leeway on their value are
supposed to be those with the highest impact on the DDNXS and therefore
the most interesting to study.

Once again, because of CPU time restriction, we limit the amount of
experimental data to be taken into account. In this study, we work with
the EXFOR data base [12]. Here, we decided to work with proton induced
reactions with energies above 200 MeV and for target nuclei lighter than
aluminium. This resulted in 7220 experimental data points taken into ac-
count. As mentioned in subsection 3.3, a careful study of the experimental
data used and their possible correlations must be done beforehand, in order
to obtain/use the best constraints. The most important in this preliminary
study of the experimental data is to make sure the experimental error bars
are consistent all together. If the error bars are globally over or underesti-
mated, this will slightly modify the output of the optimisation, notably the
parameter error bars, and the absolute value of the �

2. However, it is of
second order compare to the problem introduced by few unrealistically small
error bars aside of much larger error bars as explained in section 4.

In the case studied here, we have experimental relative error bars down
to 0.12% (EXFOR ID: E2387002, forward neutron emission at 117.5 MeV in
the reaction p(137 MeV)+ C

Nat : 4.31 ± 0.00514 mb/MeV/sr). This kind
of experimental data are toxic for our algorithm as they completely bias the
value of the �

2. Therefore, these problematic error bars need to be rescale.
Otherwise, they can also be removed. We selected the first option. Our
procedure to rescale experimental error bars is detailed in section 4. Our
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Figure 5: �
2
/Dof of INCL for the DDNXS evaluated for each iteration.

The dashed line is a fit of the �
2
/Dof with the shape a + e

�bt, which is
the shape expected with our algorithm. In gray, the 1 � standard deviation
evaluated for the statistics used along our study.

approach has not been pushed further forward as we are first interested in
the feasibility of our method.

The execution of our algorithm on the CC-IN2P3 using 20 cores took
roughly 60 hours.

First, we evaluated the model quality using the common reduced �
2

throughout the algorithm. Noteworthy, the �
2
/Dof plotted in Figure 5

depends on the statistics used. A higher statistic reduces the statistical un-
certainties and therefore the �

2.
Using the standard values for the parameters, the �

2
/Dof is equal to

7.805 ± 0.125 with a standard deviation of 0.55. The uncertainty of the
�
2
/Dof is due to the limited statistics. Using the optimal values as provided

by our algorithm, the �2
/Dof is now 7.34±0.094 with a standard deviation of

0.41. This represents an improvement of 6% of the �2
/Dof . The two �2

/Dof

provided have been estimated with the same statistic as in the algorithm to
keep the coherence.

Second, the optimal parameters have been evaluated to 4.406±0.131 (ini-
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Figure 6: Parameters optimisation during the EM (red) and the Gibbs
sampling (blue). The crosses indicates the initial values.

tially 3) for the detailed balance, to 266.4 ± 0.97 for the Fermi momentum
(initially 270), and the stopping time parameters to a = 37.13 ± 0.59 and
b = 0.226± 0.005 (initially a = 29.8 and b = 0.16). This is illustrated in the
Figure 6 in red. Respectively, these new values mean that the cross section
for the �-recombination (�N ! NN) cross section has been increased of
50%, the maximal kinetic energy of nucleons has been slightly reduced and,
the stopping time has been greatly increased (tstop = a⇥A

b, with A the mass
number of the target nucleus). The uncertainties are due to the stochasticity
of the model which is not fully compensated by a high number of iteration
in the EM phase of the algorithm. In blue, we have the evolution of the pa-
rameters along the Gibbs sampling. This provide us the parameter set range
within which the output of the model stays consistent with the experimental
data. The a posteriori acceptability range for the parameters are provided
by the standard deviation of the multivariate normal distribution obtained.
Here, the 1 � acceptability is: 0.986 (detailed balance), 8.822 (Fermi momen-
tum), 6.061 (stopping time parameter 1), 0.0658 (stopping time parameter
2).

These uncertainties can be seen as a domain of validity being given the ex-
perimental data and the model, which is considered as a valid representation
of the truth.
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7 Summary and outlook

In this study, we developed an algorithm based on the Bayesian statistics
able to optimise the parameters of a model using experimental data corre-
sponding to the prediction of this model. This algorithm is able to fit the
model prediction on the experimental data provided through the optimisa-
tion of the free parameters of the model. The objective of this algorithm is
twofold: First, the algorithm determines optimal parameters which minimise
the bias of the model and, by extension, the �2. Second, this algorithm aims
at determining the uncertainties on the parameters.

This algorithm has been developed in a global framework, namely the
Generalised Least Squares method, which allows an optimisation of the pa-
rameters for any model as long as these parameters are set free.

In our study, we first demonstrated the feasibility of such approach in a
very suited case in which we reduced the �

2 of the model by a factor 100.
In a second stage, we study the case of the neutron double di↵erential cross
section with INCL in proton-induced reaction on light nuclei. It resulted
in a reasonable improvement of the model prediction using thousands of
experimental data with a reduction of the �2 by 6%. In this second case, we
have been able to estimate the uncertainties of the free parameters used for
the optimisation.

We also highlighted the limits of the approach with, first, high CPU
requirements with several days of calculation with few tens of cores in the case
of INCL. Another limit to the approach is the availability and the quality of
the experimental data. Last but not least: the disparity of the quality of the
experimental data is a toxic issue, which must be addressed before the use of
our algorithm. This last point requires to exclude some toxic experimental
data with unrealistically small error bars or to rescale these error bars in
order to moderate the importance of the corresponding experimental data
with respect to other data evaluated with more rigorous approach.

The specific case of INCL/ABLA has been studied with the optimisation
of 4 parameters and more than 7000 experimental data from the EXFOR
data base.

Once the parameters have been optimised, the model bias of the new
version of INCL/ABLA can be estimated using the approach developed by
Schnabel in the previous CHANDA framework.
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A Derivation of the GLS method

The GLS method is the basis for inference in Bayesian networks of con-
tinuous variables with a multivariate normal prior distribution and linear
relationships between variables. In this appendix, we will derivate from the
Bayes theorem the Equation 7 and Equation 9, which are the base of our
algorithm.

Lets assume a set of parameter of interest ~p, a set of experimental data
~�exp, and a model/function M that we assume perfect. Here, a perfect model
means that M(~ptrue) = ~�true.

The Bayes theorem gives the relation between, on the one hand, the
posterior distribution of ~p called ⇡(~p|~�exp), and, on the other hand, the prior
distributions of ~p, called ⇡0(~p), and ~�exp, called ⇡(~�exp), and the likelihood
of ~�exp knowing ~p, called l(~�exp|~p):

⇡(~p|~�exp) =
l(~�exp|~p)⇥ ⇡0(~p)

⇡(~�exp)
(A.1)

Here, ⇡(~�exp) is a scalar which guaranty the normalisation of ⇡(~p|~�exp).
Both the likelihood l and the prior distribution ⇡0 are supposed to be mul-
tivariate normal distributions. Therefore, we can write:

⇡0(~p) / exp

✓
�1

2
(~p� ~pref )

T⌃�1
p (~p� ~pref )

◆
, (A.2)

with ~pref the best estimation a priori of ~p and ⌃p the covariance matrix of
~p, and:

l(~�exp|~p) / exp

✓
�1

2
(~�exp �M(~p))T⌃�1

e (~�exp �M(~p))

◆
, (A.3)

with ⌃e the covariance matrix of ~� and M a perfect model.
Since the product of two (multivariate) normal distribution is also a (mul-

tivariate) normal distribution, we also have:

⇡(~p|~�exp) / exp

✓
�1

2
(~p� ~popti)

T⌃�1
opti(~p� ~popti)

◆
, (A.4)

with ~popti and ⌃opti the optimal parameter set for the model knowing the
experimental data set ~�exp and the corresponding covariance matrix, respec-
tively.
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Since the GLS method requires linear relationships between variables, we
need to approximate the model M with a Taylor approximation:

M(~p) = M(~pref ) + Jp(~p� ~pref ), (A.5)

with Jp the Jacobian of the model.
Therefore, we can rewrite the likelihood as:

l(~�exp|~p) / exp

✓
�1

2
(~�exp �M(~pref )� Jp(~p� ~pref ))

T

1

2
⌃�1

e (~�exp �M(~pref )� Jp(~p� ~pref ))

◆
. (A.6)

simplified as

l(~�exp|~p) / exp

✓
�1

2
(Href � Jp~p)

T⌃�1
e (Href � Jp~p)

◆
, (A.7)

with the substitution of the constant term Href = ~�exp �M(~pref ) + Jp~pref .
With a combination of equations A.1, A.2, A.4, and A.7 and knowing

that ⇡(~�exp) is a scalar, we have:

exp

✓
�1

2
(~p� ~popti)

T⌃�1
opti(~p� ~popti)

◆
/ (A.8)

exp

✓
�1

2
(~p� ~pref )

T⌃�1
p (~p� ~pref )

◆
⇥exp

✓
�1

2
(Href �Jp~p)

T⌃�1
e (Href �Jp~p)

◆

It follows:

(~p� ~popti)
T⌃�1

opti(~p� ~popti) + C = (A.9)

(~p� ~pref )
T⌃�1

p (~p� ~pref ) + (Href � Jp~p)
T⌃�1

e (Href � Jp~p),

with C a constant of normalisation.
Since ~p is the only variable in Equation A.9, the coe�cients must match

for the terms with (~p)T on the left side and those with ~p on the right side.
We then have the four equations:

⌃�1
opti = ⌃�1

p + J
T
p ⌃

�1
e Jp (A.10)

⌃�1
opti~popti = ⌃�1

p ~pref + J
T
p ⌃

�1
e Href (A.11)

(~popti)
T⌃�1

opti = (~pref )
T⌃�1

p +H
T
ref⌃

�1
e Jp (A.12)

(~popti)
T⌃�1

opti~popti + C = (~pref )
T⌃�1

p ~pref +H
T
ref⌃

�1
e Href (A.13)
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Using the Woodbury matrix identity with Equation A.10, we have:

⌃opti = ⌃p � ⌃pJ
T
p (⌃e + Jp⌃pJ

T
p )

�1
Jp⌃p (A.14)

Multiplying Equation A.11 from left by Equation A.14, we get:

~popti =
�
⌃p � ⌃pJ

T
p (⌃e + Jp⌃pJ

T
p )

�1
Jp⌃p

� �
⌃�1

p ~pref + J
T
p ⌃

�1
e Href

�

= ~pref + ⌃pJ
T
p ⌃

�1
e Href � ⌃pJ

T
p (⌃e + Jp⌃pJ

T
p )

�1
Jp~pref

� ⌃pJ
T
p (⌃e + Jp⌃pJ

T
p )

�1
Jp⌃pJ

T
p ⌃

�1
e Href

= ~pref � ⌃pJ
T
p (⌃e + Jp⌃pJ

T
p )

�1
Jp~pref

+ ⌃pJ
T
p

�
⌃�1

e � (⌃e + Jp⌃pJ
T
p )

�1
Jp⌃pJ

T
p ⌃

�1
e

�
Href

= ~pref � ⌃pJ
T
p (⌃e + Jp⌃pJ

T
p )

�1
Jp~pref

+ ⌃pJ
T
p (⌃e + Jp⌃pJ

T
p )

�1
�
(⌃e + Jp⌃pJ

T
p )⌃

�1
e � Jp⌃pJ

T
p ⌃

�1
e

�
Href

= ~pref � ⌃pJ
T
p (⌃e + Jp⌃pJ

T
p )

�1
Jp~pref + ⌃pJ

T
p (⌃e + Jp⌃pJ

T
p )

�1
Href

= ~pref + ⌃pJ
T
p (⌃e + Jp⌃pJ

T
p )

�1(Href � Jp~pref )

and, replacing Href , we finally obtain:

~popti = ~pref + ⌃pJ
T
p (⌃e + Jp⌃pJ

T
p )

�1(~�exp �M(~pref )) (A.15)

Remark that this equation is true only with the hypothesis of a linear
model. However, most of realistic models can be approximated by a linear
model only locally. Therefore, M(~pref ) must be estimated reversing the
Equation A.5:

Mlin(~pref ) = M(~p) + Jp(~pref � ~p), (A.16)

with Jp the Jacobian of the model in ~p.
In order to simplify Equation A.15, we usually introduce the matrix of

regression ⌃̃i defined with Equation 5. Explicitly, the equation expands as:

⌃̃i = Ji ⌃ J
T
i =

✓
⌃e + Jp⌃pJ

T
p Jp⌃p

⌃pJ
T
p ⌃p

◆
=

✓
⌃̃DDi ⌃̃DIi

⌃̃IDi ⌃̃IIi

◆
. (A.17)

Therefore, we obtain the Equation 7:

~popti = ~pref + ⌃̃IDi

⇣
⌃̃DDi

⌘�1

[~�exp �Mlin(~pref )] , (A.18)
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and the Equation 9 from Equation A.14:

⌃opti = ⌃̃IIi � ⌃̃IDi

⇣
⌃̃DDi

⌘�1

⌃̃DIi . (A.19)

As the di↵erence |~popti � ~p| becomes smaller and smaller, the hypothesis
of a linear model between ~p and ~popti becomes more and more correct, and
therefore, the last two equations become more and more exact. This justi-
fies the use of an iterative algorithm evaluating a linearisation of the model
(Equation 2 : ~Ti) and its Jacobian (Equation 4 : Jpi) in ~pi, the best eval-
uation of the optimal parameters currently known and then, evaluating an
improved ~pi+1 from ~Ti and Jpi using Equation 7.
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