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Table of acronyms 

ANL Argonne National Laboratory (USA) 

ANN Artificial Neural Network 

ASTRID Advanced Sodium Technological Reactor for Industrial Demonstration 

CEA Commissariat à l'Énergie Atomique et aux Énergies Alternatives (Alternative Energies and 
Atomic Energy Commission, France) 

CML Critical Mass Laboratory (Rocky Flats, USA) 

DICE Database for ICSBEP 

DOE Department of Energy (USA) 

EG UACSA Expert Group on Uncertainty Analysis for Criticality Safety Assessment 

ESFR European Sodium Fast Reactor 

HCF (HEU-
COMP-FAST) 

ICSBEP designation for reactors with Higly-Enriched-Uranium fuel in Compound form and 
with a Fast neutron spectrum 

HST (HEU-SOL-
THERM) 

ICSBEP designation for reactors with Higly-Enriched-Uranium fuel in Solution form and 
with a Thermal neutron spectrum 

ICSBEP International Criticality Safety Benchmark Evaluation Project 

IPEN   Instituto de Pesquisas Energéticas e Nucleares (Nuclear Energy Research Institute, Brazil)  

IRPhE International Reactor Physics Experiment Evaluation 

IPPE Institute of Physics and Power Engineering (Russia) 

JAEA  Japan Atomic Energy Agency  
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LANL Los Alamos National Laboratory (USA) 

LLNL Lawrence Livermore National Laboratory (USA) 

LCT (LEU-COMP-
THERM) 

ICSBEP designation for reactors with Low-Enriched-Uranium fuel in Compund form and 
with a Thermal neutron spectrum 

MCF (MIX-
COMP-FAST) 

ICSBEP designation for reactors with Mixed uranium and plutonium fuel in Compund 
form and with a Fast neutron spectrum 

MCT (MIX-
COMP-THERM) 

ICSBEP designation for reactors with Mixed uranium and plutonium fuel in Compund 
form and with a Thermal neutron spectrum 

MMF (MIX-
MET-FAST) 

ICSBEP designation for reactors with Mixed uranium and plutonium fuel in Metallic form 
and with a Thermal neutron spectrum 

MCNP Monte Carlo N-Particle 

ML Machine Learning 

NEA Nuclear Energy Agency of the OECD 

OECD Organization for Economic Cooperation and Development 

ORNL Oak Ridge National Laboratory (USA) 

PMF (PU-MET-
FAST) 

ICSBEP designation for reactors with Plutonium fuel in Metallic form and with a Fast 
neutron spectrum 
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THERM) 

ICSBEP designation for reactors with Plutonium fuel in Solution form and with a Thermal 
neutron spectrum 
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VNIIEF All-Russian Scientific Research Institute of Experimental Physics 
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1 Introduction 

The main purpose of SANDA project Task 5.2 is to assess the JEFF evaluated nuclear files using existing 
experiments, with the aim to contribute to the development of the future JEFF-4.0 nuclear data library. 
Calculations (𝐶) are compared with experimental measurements (𝐸) and results are analysed to identify possible 
biases and trends. However, while the comparison between 𝐶 and 𝐸 is essential and provides much information, 
it does not make the most of all the information provided by the experimental measurements. Adjustment and 
assimilation studies are powerful techniques to make the most of the information provided by experimental 
measurements and reducing biases in the calculation results and providing recommendations for nuclear data 
improvement.  
 
Adjustment and assimilation techniques usually need to employ a large set of integral experiments to provide 
consistent information. However, the experimental parameters of the experiments within this set can be 
correlated, and for the application of these techniques it is essential to have some prior knowledge of these 
correlations. These correlations may arise from the use of the same facility, materials or measurement 
techniques, among other elements. To stress the importance of an adequate knowledge of these correlations, 
it is worth mentioning that the Working Party on International Nuclear Data Evaluation Co-operation (WPEC) of 
the OECD/NEA has very recently approved the proposal (May 2024) and established a new subgroup (as 
successor of the former subgroup 46) whose objectives include “the determination of experimental correlations 
between integral benchmarks; and to assess their importance in a nuclear data adjustment”.  
 
In this line, subtask 5.2.1, entitled “Assessing correlations in integral experiments” has been included within 
SANDA project Task 5.2. More specifically, the description of task 5.2.1 reads:  
 

Subtask 5.2.1: Assessing correlations in integral experiments  
While a considerable effort has been given to nuclear data covariances in recent years, much less attention has 
been paid to correlations in integral experiments used in validation, adjustment, and assimilation studies. In point 
of fact, correlation coefficient data for criticality cases are available for only 93 integral experiments of the DICE 
database associated with the ICSBEP Handbook.  
Although this project will not attempt to produce adjusted nuclear data libraries nor to assimilate validation 
information, CIEMAT, JSI, CEA/DEN, and UPM will share their best experts’ opinions on the “missing 
correlations in integral experiments” problem, with the goal of assessing its impact on nuclear data validation 
studies. Simulations will be made to estimate the correlations between the experimental uncertainties of 
integral experiments and quantify their impact on some reactor concept. 

 
This report presents the results of this subtask. It is structured as follows. In section 2 and 3, the origin of the 
experimental correlations and their impact are described. Then, in section 4, a survey of the available 
correlations between integral experiments is presented. Although this study mainly focuses on criticality 
benchmark experiments, a review of the status of correlations in between shielding benchmarks is also included. 
In section 5, the methodologies used for calculating correlations between integral experiments are discussed. 
Finally, in section 6, four applications to particular cases are presented: (1) two cores of the EOLE facility 
investigated under the CAMELEON program, (2) a set of six cores loaded in the ZPR facility, which are considered 
to be of interest for validation of nuclear data for Sodium Fast Reactors (SFRs); (3) reaction rates measured at 
the ASPIS Iron-88 benchmark experiment, and (4) an example of the application of Machine Learning techniques 
in the interpretation of uncertainties and correlations in a benchmark experiment.  
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2 Origin of experimental correlations 

Measured integral parameters of nuclear reactors such as the multiplication factor are always accompanied by 
experimental uncertainties. These uncertainties arise from uncertainties in the material compositions, 
impurities, densities, dimensions, etc. of the experimental facility, as well as in the measurements techniques 
used. These uncertainties are provided by the experimentalists or inferred from the experimental 
documentation and based on that, the benchmark evaluators propagate the uncertainties in physical 
parameters to obtain an experimental uncertainty in the integral responses. Although this procedure is a 
complex task, since experimental uncertainties are not always easy to evaluate, the experimental 
documentation may be incomplete or missing (especially in the case of experiments performed in the distant 
past), the procedures to achieve this are well established [Dean 2008], at least for the case of the ICSBEP [NEA 
ICSBEP] and IRPhE [NEA IRPhE] databases, and this information is usually provided in the benchmark 
documentation.  
 
However, the uncertainties in measured quantities of interest (or “integral parameters”) of different reactor 
systems are not necessarily independent, but they may be correlated. In fact, nuclear benchmark experiments 
are usually performed in series, either having been performed at the same experimental facility or at different 
facilities sharing some characteristics or properties, e.g. using the same materials, instrumentation, 
experimental techniques, etc. Consequently, the measured values of these experimental parameters will not be 
independent but will have some degree of correlation. Although these correlations are known to occur, 
relatively little attention has been paid to them, and no information about them is provided in ICSBEP benchmark 
documentation.  
 
Having reached this point, it is important to distinghish between the concepts of similarity and correlation:  

1) Similarity. Some degree of similarity between experiments is due to two experiments being sensitive to 

the same set of nuclear data. For instance, two light-water moderated, uranium-fuelled experiments 

will likely be more similar between them than to a fast plutonium system. Hence, similarities are present 

between experiments which utilize the same types of materials, even if they are performed in totally 

independent facilities. Similarities are usually assessed via similarity coefficients. If a certain response of 

the two systems, 𝑘1 and 𝑘2, is a function of the same set of parameters 𝛼1, … , 𝛼𝑁 (usually, neutron cross 

sections or other nuclear data) then the similarity in the response can be defined as:  

𝐸 =
𝑆1,𝛼

𝑇 𝑆2,𝛼

√(𝑆1,𝛼
𝑇 𝑆1,𝛼)(𝑆2,𝛼

𝑇 𝑆2,𝛼)

=
𝑆1,𝛼

𝑇 𝑆2,𝛼

|𝑆1,𝛼||𝑆2,𝛼|
        (2.1) 

Where 𝑆1,𝛼 = (𝜕𝑘1 𝜕𝛼1⁄ , … , 𝜕𝑘1 𝜕𝛼𝑁⁄ ) and 𝑆2,𝛼 = (𝜕𝑘2 𝜕𝛼1⁄ , … , 𝜕𝑘2 𝜕𝛼𝑁⁄ ) denote the sensitivity 

vectors of the responses 𝑘1 and 𝑘2 to the set of parameters 𝛼1, … , 𝛼𝑁. Although these similarity 
coefficients play an important role in nuclear data adjustment and assimilation studies, they are out of 
the scope of this study.  
 

2) Correlation in the experimental input parameters. These are the correlations that are assessed in this 

work. They are not due to two experimental measurements being sensitive to the same parameters 

(nuclear data) but, as stated above, they arise when two experiments are performed in the same facility 

or otherwise share some commonality (e.g. the fuel composition in two experiments performed with 

the same fuel), the corresponding uncertainties will therefore not be independent but correlated. 
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3 Impact of experimental correlations 

Experimental correlations have a major impact for at least two applications: (1) assessing the calculational bias 
in criticality safety assessment, and (2) nuclear data adjustment and assimilation. They are briefly reviewed in 
this section.  

3.1 Calculational bias in Criticality Safety Assessment  

The validation of neutron transport codes and nuclear data is an important step in criticality safety assessment. 
This validation is performed by comparing the calculated results of the multiplication factorwith the 
experimental results of benchmark experiments. In this context, if we have an integral experiment for which 
both experimental and calculated values of the multiplication factor 𝑘𝑒𝑥𝑝 and 𝑘𝑐𝑎𝑙𝑐 are available, the 

calculational bias can be defined as1: 
 

Δ𝑘 = 𝑘𝑐𝑎𝑙𝑐 − 𝑘𝑒𝑥𝑝      (3.1) 

 
If validation is performed using a set of fully independent integral experiments (i.e. assuming that they 
experimental parameters are fully uncorrelated, and hence their uncertainty in 𝑘𝑒𝑥𝑝), then the average 

calculational bias and its variance will be given by the well-known expressions (see e.g. the Statistics section of 
[Tanabashi 2018]) : 
 

∆𝑘̅̅̅̅ =

∑
∆𝑘𝑖

𝜎𝑘𝑒𝑥𝑝,𝑖
2

𝑁
𝑖=1

∑
1

𝜎𝑘𝑒𝑥𝑝,𝑖
2

𝑁
𝑖=1

=

∑
𝑘𝑐𝑎𝑙𝑐,𝑖−𝑘𝑒𝑥𝑝,𝑖

𝜎𝑘𝑒𝑥𝑝,𝑖
2

𝑁
𝑖=1

∑
1

𝜎𝑘𝑒𝑥𝑝,𝑖
2

𝑁
𝑖=1

      (3.2) 

 

σ∆𝑘̅̅̅̅ =
1

√∑
1

𝜎𝑘𝑒𝑥𝑝,𝑖
2

𝑁
𝑖=1

      (3.3) 

 
However, if some correlations exist between the experiments, these expressions will become [Schmelling 1995, 
Ivanova 2003a]: 
 

∆𝑘̅̅̅̅ =
∑ 𝐶𝑖,𝑗

−1(𝑘𝑐𝑎𝑙𝑐,𝑖−𝑘𝑒𝑥𝑝,𝑖)𝑁
𝑖,𝑗=1

∑ 𝐶𝑖,𝑗
−1𝑁

𝑖,𝑗=1

      (3.4) 

 

σ∆𝑘̅̅̅̅ =
1

√∑ 𝐶𝑖,𝑗
−1𝑁

𝑖,𝑗=1

      (3.5) 

 
Where 𝐶𝑖𝑗 = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗 is the 𝑁 × 𝑁 covariance matrix of the set of N integral experiments, and 𝜌𝑖𝑗  is the Pearson’s 

correlation coefficient between the experiments i and j, defined as: 
 

𝜌𝑖𝑗 =
𝑐𝑜𝑣(𝑘𝑒𝑥𝑝,𝑖,𝑘𝑒𝑥𝑝,𝑗)

√𝑣𝑎𝑟(𝑘𝑒𝑥𝑝,𝑖)√𝑣𝑎𝑟(𝑘𝑒𝑥𝑝,𝑗)

      (3.6) 

 
As an example of the relevance of the correlations to determine the calcualtional bias, let us consider a simple 
case of two experiments with 𝑘𝑐𝑎𝑙𝑐,1 − 𝑘𝑒𝑥𝑝,1 = 0.01 and 𝑘𝑐𝑎𝑙𝑐,2 − 𝑘𝑒𝑥𝑝,2 = 0.02, with experimental 

                                                 
1 In [NEA 2013a] eq. 92 an alternative definition is given as: 

Δ𝑘 =
𝑘𝑐𝑎𝑙𝑐

𝑘𝑒𝑥𝑝

− 1 
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uncertainties 𝜎𝑘𝑒𝑥𝑝,1
= 0.7% and 𝜎𝑘𝑒𝑥𝑝,2

= 1%. With these conditions, if experiments 1 and 2 are not correlated, 

the correlation matrix and the calculation bias will be:  
 

𝐶 = (
𝜎𝑘𝑒𝑥𝑝,1

2 0

0 𝜎𝑘𝑒𝑥𝑝,2

2 )   and   ∆𝑘̅̅̅̅ = 0.0133 ± 0.0057 

 
On the other hand, if experiments 1 and 2 share some components of the uncertainty so that the correlation 
coefficient is 0.85, then the correlation matrix and the calculation bias will be:  
 

𝐶 = (
𝜎𝑘𝑒𝑥𝑝,1

2 0.85𝜎𝑘𝑒𝑥𝑝,1
𝜎𝑘𝑒𝑥𝑝,2

0.85𝜎𝑘𝑒𝑥𝑝,2
𝜎𝑘𝑒𝑥𝑝,1

𝜎𝑘𝑒𝑥𝑝,2

2 )   and   ∆𝑘̅̅̅̅ = 0.0065 ± 0.0067 

 
As a final comment, if a Monte Carlo code is used to determine the correlations, the calculated values will also 
be affected by statistical errors inherent to the Monte Carlo method (see section 5.2).  
 

3.2 Nuclear data adjustment  

Another field where the correlation matrices between experimental experiments are used is for nuclear data 
adjustment [NEA 2010, NEA 2013]. Nuclear data adjustment is a procedure to determine an improved value of 
a cross section from the results of integral experiments. In this procedure, if a set of 𝑁𝜎  cross section values are 
to be determined (𝑁𝜎  = number of isotopes × number of energy groups) and a set of 𝑁𝐸  experimental values, 
then the better values of the cross sections will be the ones minimizing the following expression: 
 

𝜒2 = (�⃗� − �⃗�𝑚)𝑇𝑀𝜎
−1(�⃗� − �⃗�𝑚) + (�⃗⃗� − 𝐶(�⃗�))

𝑇
𝑀𝐸

−1 (�⃗⃗� − 𝐶(�⃗�))      (3.7) 

 
Where  

 �⃗� = (𝜎1, … , 𝜎𝑁𝜎
) is the adjusted (a posteriori) cross section vector. 

 �⃗�𝑚 = (𝜎𝑚,1, … , 𝜎𝑚,𝑁𝜎
) is the original (a priori) cross section vector. 

 𝑀𝜎 is the 𝑁𝜎 × 𝑁𝜎  covariance matrix of nuclear data.  

 �⃗⃗� is the 𝑁𝐸  vector of experimental values. 

 𝐶(�⃗�) is the 𝑁𝐸  vector of calculated values, with the a-posteriori set of data �⃗�. 

 𝑀𝐸 is the 𝑁𝐸 × 𝑁𝐸 experimental covariance matrix of the experimental values. 

In addition, 𝑀𝐸  can include not only the experimental uncertainties, but also the experimental and modelling 
covariances. For information about how to obtain the modelling uncertainties, see for instance [NEA 2013].  
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4 Status of existing correlations 

4.1 Correlations between criticality benchmarks 

Many benchmark experiments in the International Handbook of Evaluated Criticality Safety Benchmark 
Experiments (ICSBEP) and in the International Handbook of Evaluated Reactor Physics Experiments (IRPhE) 
provide detailed information about the uncertainties in the system description as well as their estimated impact 
on the integral responses. In the case of ICSBEP, this information is provided in section 2 “Evaluation of 
experimental data” of the benchmark description documents [Dean 2008].  
 
To our knowledge, the most complete database of correlations between integral experiments is the one 
included in the NEA’s DICE tool [NEA DICE, Nouri 2003]. However, even this one contains a rather limited amount 
of experimental correlation data: as of February 2024, correlation coefficient data between experimental 
benchmark criticality cases are available for only 93 cases in the DICE database associated with the ICSBEP 
handbook. This represents a small fraction of the total of over 5000 integral experiments, underscoring the fairly 
small number of evaluations that contain quantitative correlations. 
 
This information can be extracted from DICE from the panel “Correlation Matrix → Display Uncertainties → 
Show cases level details”. A qualitative correlation matrix is provided, where the degree of correlation goes from 
0 and 1000, 0 meaning no correlation and 1000 meaning full correlation, i.e. Pearson’s correlation coefficient is 
equal to 1 (Figure 1).  
 
More specifically, the sets of integral experiments for which quantitative correlation data are present are: 

 55 cases corresponding to four sets of HEU-SOL-THERM benchmarks: 21 from IPPE (corresponding to 

the benchmarks HST019/025/027/028/029/030/035), 24 from ORNL, further divided into two blocks of 

14 (HST009/ /010/011/012/043) and 10 (HST013/032/042) and 10 from Rocky Flats (HST001). The likely 

source is [Ivanova 2003a].  

 A total of 33 cases from the Zero Power Reactor (ZPR) and/or Zero Power Physics Reactor (ZPPR) 

experiment series of Argonne National Laboratory. The likely source is [Palmiotti 2014].   

 3 cases from VNIIEF (HEU-MET-FAST-018-001, HEU-MET-FAST-020-001 and HEU-MET-FAST-031-001). 

They correspond to three experiments carried out at the CTF facility, a bare, 90% enriched uranium with 

different reflectors.  

 2 cases from VNIITF (HEU-MET-FAST-008-001, HEU-MET-FAST-011-001). They correspond to two 

different configurations from the FKBN facility: highly-enriched uranium spheres, both bare and with a 

polyethylene reflector.   

A major limitation of DICE, in our opinion, is that no information about the source of these correlation data is 
provided (although in some cases it can be guessed, as stated above), and hence we do not know the 
methodology followed and the hypothesis made to determine them (i.e., which variables are considered to be 
correlated between these experiments, see section 5), which makes difficult to reproduce the results.   
 
In addition to these experimental correlations included in DICE, quantitative results are available in the literature 
for some other systems:  

 Correlations in keff of some selected fast experiments taken from ICSBEP and IRPhE: BFS-97/99/101 

[Ivanova 2009] and Zebra, MZA, MZB, ZPR-6/7 and Sneak 7A/B [Ivanova 2014] 

 Correlations for experiments involving arrays of low-enriched fuel rods measured at the “Apparatus-B” 

facility at CEA-Valduc (France), corresponding to the LEU-COMP-THERM-007 and LEU-COMP-THERM-
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039 benchmarks of ICSBEP. These correlations were performed under EG UACSA Benchmark Phase IV 

and results calculated by different organizations are available [NEA 2023].   

 Correlations between 7 cases of LEU-COMP-THERM-042, also consisting of arrays of water-moderated 

fuel rods, measured at the Critical Mass Laboratory of PNL at Hanford (USA). [Marshall 2017a, Marshall 

2017c, Marshall 2019]. 

 Correlations for experiments involving high-enriched uranium solutions with a thermal neutron energy 

spectrum. 1 evaluation was considered: HEU-SOL-THERM-001 [Marshall 2017b, Marshall 2017c]. 

 Correlations for plutonium nitrate in aqueous solution contained in metal sphere. Analysis of 43 critical 

experiments from 6 experimental series PU-SOL-THERM-03 to -06, and -20 and -21 [Kilger 2016]. 

 Correlations between the keff of the ZPR-6/7, ZPR-6/7 with high Pu-240 content and ZPPR-9 

experiments of ANL (USA) [NEA 2013b]. This reference also list the correlation between other 

experimental parameters of fast reactors (spectral indexes, reactivity effects).  

A summary list of these references, classified by the methodology used to determine them (deterministic and 
Monte Carlo), is given in Table 1. It is worth stressing here that different evaluations of the experimental 
correlations can produce very different results. For instance, the correlation between the keff of ZPR-6/7 
(MCF001-001) and ZPR-6/7 with high Pu-240 content (MCF002-001) is listed as 0.66 in DICE and [Palmiotti 2014], 
but as 0.134 in [Ivanova 2014] and [NEA 2013b]. 
 
Finally, in addition to the systems for which DICE provides quantitative correlations listed above, qualitative 
correlations are provided for a larger set of cases (Figure 2). A symbol ‘‘+” indicates that these two cases are 
correlated or, in other words, that one or several uncertain benchmark parameters that are major contributors 
to the overall experimental keff uncertainty are correlated. The symbol ‘‘(+)” indicates a 100% correlation, hence 
it usually appears in the diagonal. When it appears outside the diagonal, it means that an evaluation has more 
than one identifier in ICSBEP, i.e. is a cross-reference. Some of the systems for which the existence of 
correlations is stated in DICE – and are therefore worth investigating – are: 

1) IPPE: 30 benchmark experiments in three facilities (BRR, KBR and BFS). Among them, correlations 

between 10 configurations of BFS are provided in [Ivanova 2009], as stated above.  

2) VNIIEF: 34 benchmark experiments performed at the CTF facility, which can be further classed in 6 

groups according to the fuel used. In DICE, quantitative correlations only for three cases are listed. 

3) VNIITF: 54 benchmarks experiments performed at the FKBN facility, also classified in four groups 

according to the fuel used and the geometry (cylindrical or spherical). Quantitative correlations are only 

listed in DICE for four cases. 

4) Kurchatkov Institute: 30 benchmark in 6 groups, according to the experimental facility.  

5) JAEA: 29 benchmark experiments in two facilities (5 in TCA and 24 in STACY) 

6) IPEN: 18 benchmark experiments in the MB-01 reactor.  
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Figure 1. Example of quantitative correlations between experimental benchmarks provided by DICE. 

 

 

Figure 2. Example of qualitative correlations between experimental benchmarks provided by DICE. 
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4.2 Correlations between shielding benchmarks  

Although less attention has been paid to them, correlations between parameters in different shielding 
experiments are of interest as they involve other types of integral measurements. In fact, one of the strong 
points of the SINBAD shielding benchmark project [NEA SINBAD, Kodeli 2013] is that it devotes great attention 
to the careful evaluations, and the understanding and consolidation of the uncertainties involved in the 
measurements, stressing the importance of different terms and types of uncertainties. Where the information 
is available, the systematic and stochastic components of the uncertainties are differentiated and analysed, 
which allows to establish the full covariance matrix among the measured values. Among the good examples 
where this was possible, the ASPIS, FNG and others benchmarks can be cited. As an example, the covariance 
matrix of the reaction rates measured in the ASPIS Iron-88 benchmark [Wright 1993, Avery 1995, Milocco, 2015] 
is presented in section 6.3.  
 
In section 6.3, it is demonstrated another useful approach: in some cases, if the information on the systematic 
uncertainty is available (and reliable), it is advantageous to compare the ratios of the measured quantities, as 
the (major part of) the systematic uncertainty then cancels out. It is worth remarking, however that the 
statistical uncertainties, both experimental and computational (e.g. Monte Carlo statistics) are summed up. This 
approach, although often used, may also lead to the loss of some experimental information (e.g. on the spectra 
distribution, which is due to the use of the “case-dependent” normalisation factor).  
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5 Methodologies to generate correlations 

5.1 Deterministic approach 

The deterministic methodology was first proposed in [Ivanova 2003]. Let us consider a set of 𝑁 criticality 
benchmark experiments whose multiplication factor k depends on a set of 𝑀 experimental parameters (e.g. 
compositions, dimensions, etc.). As stated above, these parameters are inevitably affected by experimental 
uncertainties, which, in turn, will propagate into an uncertainty in k. Let us denote by 𝛿𝑘𝛼,𝑖  the uncertainty in 

the multiplication factor 𝑘𝑖 of the i-th experimental benchmark due to the uncertainty in the experimental 
parameter 𝛼. If, for this i-th integral experiment, we can assume that the set of parameters 𝛼 are uncorrelated2 
the total uncertainty in 𝑘𝑖 will be given by:  
 

𝛿𝑘𝑖 = √∑ 𝛿𝑘𝛼,𝑖
2

𝛼        (5.1) 

 
Then, if a parameter 𝛼 is correlated between the experiments i and j, the correlation coefficient between the 
uncertainties of the multiplication factor of two experiments, 𝑘𝑖 and 𝑘𝑗, in this set of benchmarks can be 

calculated as: 
 

𝜌𝑖𝑗 =
∑ 𝛿𝑘𝛼,𝑖𝛾𝛼

𝑖,𝑗
𝛿𝑘𝛼,𝑗𝛼

𝛿𝑘𝑖𝛿𝑘𝑗
=

∑ 𝛿𝑘𝛼,𝑖𝛾𝛼
𝑖,𝑗

𝛿𝑘𝛼,𝑗𝛼

√∑ 𝛿𝑘𝛼,𝑖
2

𝛼 √∑ 𝛿𝑘𝛼,𝑗
2

𝛼

      (5.2) 

 

Where 𝛾𝛼
𝑖,𝑗

 denotes the correlation between the uncertainties in the parameter α between the experiments i 

and j, i.e. 𝛾𝛼
𝑖,𝑗

= 1 if the uncertainties are fully correlated (e.g. the uncertainty in the fuel composition in two 

experiments sharing the same fuel) and 𝛾𝛼
𝑖,𝑗

= 0 if the uncertainties are fully independent (e.g. uncertainties in 

the fuel composition in two experiments using different fuels). If 𝑖 = 𝑗, then 𝛾𝛼
𝑖,𝑖 = 𝛾𝛼

𝑗,𝑗
= 1 and 𝜌𝑖𝑖 = 𝜌𝑗𝑗 = 1. 

Notice, however that if 𝑖 ≠ 𝑗, the values 𝜌𝑖𝑗  will be, in general, lower than 1 even if all parameters 𝛼 are fully 

correlated3. We use the notational convention that Greek letters range over the experimental parameters and 
Latin letters over experiments.  
 
The values 𝛿𝑘𝛼,𝑖 can be calculated with neutron transport codes. In fact, they are often provided in the 

benchmark documentation (section 2 of ICSBEP benchmarks, “Evaluation of experimental data”). Having 
reached this point, it is worth mentioning that Eq. 5.2 can be further developed by expressing the uncertainties 
𝛿𝑘𝛼,𝑖 in terms of sensitivities of 𝑘𝑖 to the parameter 𝛼 and the uncertainty in 𝛼 itself (𝛿𝛼), namely: 
 

𝛿𝑘𝛼,𝑖 = (
𝜕𝑘𝛼,𝑖

𝜕𝛼
) 𝛿𝛼 = 𝑆𝛼,𝑖𝛿𝛼      (5.3) 

 

                                                 
2 In principle it is possible to achieve a description of a system in terms of uncorrelated parameters if only the “fundamental” 
parameters of the system are considered. But in practice, many times some “intermediate” parameters, that may already 
include correlations, are taken as inputs in some simplified model. 
3 This arises from the fact that different benchmark experiments will have in principle different sensitivities to a given 
parameter. Consider, for instance two benchmark systems sharing two experimental parameters so that the uncertainties 
in k in the two systems due to these parameters are 𝛿𝑘𝛼=1,𝑖=1 = 0.05, 𝛿𝑘𝛼=2,𝑖=1 = 0.2, 𝛿𝑘𝛼=1,𝑖=2 = 0.1, 𝛿𝑘𝛼=2,𝑖=2 = 0.1.  

Then, 

𝜌12 =
𝛿𝑘𝛼=1,𝑖=1𝛿𝑘𝛼=1,𝑖=2 + 𝛿𝑘𝛼=2,𝑖=1𝛿𝑘𝛼=2,𝑖=2

√𝛿𝑘𝛼=1,𝑖=1
2 + 𝛿𝑘𝛼=2,𝑖=1

2 √𝛿𝑘𝛼=1,𝑗=1
2 + 𝛿𝑘𝛼=2,𝑗=1

2

= 0.8575 
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Where the experimental uncertainty 𝛿𝛼 has to be obtained from the experiment documentation and the 
sensitivities 𝑆𝛼,𝑖  can be obtained with neutron transport codes4. With this notation, Eq. 5.2 can be expressed in 
the matrix form:  
 

𝜌𝑖𝑗 =
∑ 𝑆𝛼,𝑖𝛿𝛼𝛾𝛼

𝑖,𝑗
𝛿𝛼𝛿𝑆𝛼,𝑖𝛼

𝛿𝑘𝑖𝛿𝑘𝑗
=

(𝑆1,𝑖 … 𝑆𝑀,𝑖)(

𝛾1
𝑖,𝑗

𝛿𝛼1
2 0 0

0 ⋱ 0

0 0 𝛾𝑀
𝑖,𝑗

𝛿𝛼𝑀
2

)(

𝑆1,𝑗

⋮
𝑆𝑀,𝑗

)

𝛿𝑘𝑖𝛿𝑘𝑗
=

𝑆𝑖
𝑇𝑉𝑖𝑗𝑆𝑗

𝛿𝑘𝑖𝛿𝑘𝑗
      (5.4) 

 

𝑉𝑖𝑗 being the 𝑀 × 𝑀 covariance matrix of the set of experimental parameters. Notice that the terms outside 
the diagonal are zero because we have considered that the parameters 𝛼 are not correlated for a given 
experiment; should correlations within a given experiment exist, the corresponding non-diagonal terms will be 
non-zero.  This matrix formulation is known as the “sandwich rule” (e.g. [Cacuci 2003]) and is used in e.g. [Dos 
Santos 2013]. Notice that in [Dos Santos 2013], a further distinction is made between “technological 
uncertainties” and “measurement technique uncertainties” resulting in a formula of the type: 
 

𝜌𝑖𝑗 =
𝑆𝑖

𝑇𝑉𝑡𝑒𝑐ℎ
𝑖𝑗

𝑆𝑗+𝛿𝑒𝑥𝑝
𝑖𝑗

𝛿𝑘𝑖𝛿𝑘𝑗
         (5.5) 

 
Where the measurement technique correlation matrix takes the form of the Kronecker symbol: it was 
considered to be 1 if the technique used to measure the multiplication factor k is the same in the two techniques, 
or 0 if two different techniques were used.  
 
As stated above, this technique was first applied, to our knowledge, in [Ivanova 2003]. A summary of other works 
applying this deterministic methodology to find correlations between experimental benchmarks is presented in 
Table 1(a).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
4 These sensitivity coefficients can be determined by comparing 2 direct calculations or by using perturbation theories. 
Many modern neutron transport codes can perform perturbation calculations (e.g. KPERT and KSEN functionalities in the 
MCNP code), thus allowing to carry out several such calculations.  
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Table 1. Correlations between integral experiments available in the literature. 

(a) Obtained with the deterministic methodology.   

References Summary 

[Ivanova 2003a] 
[Ivanova 2003b] 

Methodology described. Correlations in k
eff

 unc. for 77 HEU-SOL-THERM cases: 34 

from IPPE, 10 from Rocky Flats, 29 from ORNL and 4 from LANL. No numerical 
information. 

[Ivanova 2009] 
Correlations in k

eff
 unc. for 10 cases from IPPE’s BFS-99, 99 and 101 

(MMCF003/004, MMCM001)  

[Dos Santos 2013] 
[Dos Santos 2014] 

Methodology described. Correlations in k
eff

 unc. for 6 systems, including 3 cases 

from ICSBEP (ZPR-10A(?) and MCT001). 

[Ivanova 2014] 

Correlations in k
eff

 unc. for some fast benchmarks from IRPhE (ZEBRA, ZPR, SNEAK, 

NEA-NSC-WPEC-SG33) and thermal benchmarks for ICSBEP (LCT007-039, UACSA 
Benchmark Phase IV) 

[NEA 2013b] 
[Salvatores 2014] 

Correlations in k
eff

 unc. for ZPR-6/7 and ZPPR-9, correlations in spectral indexes in 

some other systems. 

[Palmiotti 2014] 
Correlations in k

eff
 unc. for 33 ZPR benchmark experiments. Results of US DOE 

Nuclear Data Adjustment Project.  

[Jeong 2017] 
Correlation matrices for some LEU-COMP-THERM and HEU-COMP-FAST cases. No 
numerical information. 

 

 (b) Obtained with the Monte Carlo methodology.   

References Summary 

[Buss 2010] 
Correlations in k

eff
 unc. for 97 LEU-COMP-THERM and MIX-COMP-THERM cases. MC 

code used: SCALE 6. No numerical information. 

[GRS 2016b] 
[Peters 2016] 
[Kilger 2016] 

Correlations in k
eff

 unc. for 9 LCT cases (LCT006 and LCT035/062, JAEA’s TCA) and 43 

PST cases (PST003/006/020/21) (no numerical information). MC code used: KENO.  

[Marshall 2015] 
[Marshall 2017a] 
[Marshall 2017b] 
[Marshall 2017c] 

Correlations in k
eff

 unc. for a series of cases of LCT007/039 (CEA Valduc), LCT042 

(PNL) and HST001 (Rocky Flats) benchmarks. MC code used: KENO 

[Sommer 2021] 
S2Cor methodology for efficient MC sampling to calculate correlatons. Applied to 
some LCT007 (CEA Valduc) cases. MC code used: KENO 
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(c) Other sources of correlations between integral experiments.   

References Summary 

[GRS 2016a] 
[Marshall 2017a] 
[Marshall 2017c] 
[Marshall 2019] 
[Stuke 2019] 
[NEA 2023] 

Results of EG UACSA Benchmark Phase IV. Intercomparison of methodologies for 
generating correlation matrices in LCT-007 (4 cases) and LCT-039 (17 cases) 
(Apparatus-B @ CEA Valduc)  

 

The most critical point in this approach is determining the correlation coefficients 𝛾𝛼
𝑖,𝑗

. This is usually achieved 
by expert-judgement, since a high level of understanding of the experimental procedures is required to estimate 
the correlation degree. A systematic approach has been proposed in [Salvatores 2013], consisting of the 
following steps:   
 

1) Classification of Error Components to either Common or Independent 

2) Summation of Common and Independent Errors 

3) Evaluation of correlation factor 

 

5.2 Monte Carlo sampling approach  

Methodologies based on random sampling of perturbed parameters within model inputs can be used to evaluate 
correlations. After determining the most important parameters influencing the uncertainty in the quantities of 
interest of the systems being investigated, and deciding which of them are correlated between the systems and 
which of them are not, these parameters are randomly sampled, taking into account the correlations. Then, 
calculations are performed for every system and set of parameters. Notice that the neutronic calculations are 
not necessarily performed with MC codes, but deterministic codes can be used as well. Then, eq. 3.6 is applied 
to the results of these calculations to obtain the correlation coefficients between every pair of systems.  
 
The advantages of the Monte Carlo technique over the deterministic technique are that it does not require to 
know beforehand, calculate or make hypothesis about the values 𝛿𝑘𝛼,𝑖. However, the issue of determining 
which ones are correlated or not remains open. The major disadvantage, as usual with any stochastic procedure, 
is the computational resources required. Related with this, important attention has to be paid to the 
convergence of correlation coefficients and the impact of stochastic uncertainty in the results. In appendix 1, 
equations to propagate these uncertainties are derived.  
 
To our knowledge, the Monte Carlo technique was first applied to obtain correlation coefficients between 
experimental uncertainties nuclear benchmark experiments in [Buss 2010], using the SCALE code system. Other 
applications of the technique for finding experimental correlations are summarized in Table 1(b).  
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5.3 Machine Learning techniques for interpretation of experimental measurements  

Recently, Machine Learning (ML) techniques have arisen as powerful methods capable to exploit the known 
information about some data sets (referred as training sets) to predict properties for an another, unknown data 
sets. The relationship between predicted properties and augmented variables is deduced from the training set 
(e.g. measured set of data) and is then applied to the non-training set (missing data points). The model is typically 
constructed by a Gaussian process, defined by mean values and covariance functions. The main challenge of 
using ML methods is the understanding and physical interpretation of the results obtained, involving both the 
original uncertainties (e.g. experimental) and ML model uncertainties.  
 
As an example of the possible use and performances of different ML methods, an example is presented in section  
6.4, where these techniques have been applied to exploit the experimental power distribution results measured 
at several location in the VENUS experimental reactor core during the VENUS-3 shielding benchmark [Berger 
2024].  
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6 Applications 

In this section, we present three applications of the previously described methodologies to determine the 
correlation coefficients between integral experiments: (1) correlations between two different configurations of 
the core of the EOLE light water zero-power reactor at CEA-Cadarache; (2) correlations between a set of 
experiments performed at the ZPR/ZPPR reactor at Argonne National Laboratory that have been obtained from 
the ICSBEP database, and (3) covariances between reaction rates measured at the ASPIS Iron-88 benchmark 
experiment. Furthermore, a recent example of the the application of Machine Learning techniques in the 
interpretation of uncertainties and correlations in a benchmark experiment (VENUS-3 shielding benchmark) is 
also presented.  

6.1 EOLE/CAMELEON 

The CAMELEON core was loaded in the EOLE reactor vessel (95cm of diameter) at the beginning of the 1980s 
[Santamarina 1982]. It was made of 805 UOx fuel pins (labelled UOX100 in Figure 3) for the central part and 
made of 959 UOx fuel pins (labelled UOX140 in Figure 3) for the peripheral part. All fuel rods, 3.5% 235U enriched, 
were arranged in a square lattice (pitch was 1.26cm). The homogeneous loading plan, labelled “Tout UO2”, is 
shown in Figure 3. The critical boron was adjusted for each configuration.  
 

 
Figure 3. Reference configuration “Tout UO2” of the CAMELEON core. 

 
In addition to this homogeneous configuration, two other configurations with various contents of gadolinium in 
the center fuel were loaded into the EOLE core. As shown in Figure 4, the central 17x17 “assembly” was loaded 
with different patterns containing different number of gadolinium rods of two types: 

 Type A, depleted uranium 235U (0.25%) and 7% of Gd2O3, 

 Type B, enriched 235U (5%) and 3% of Gd2O3. 

= Crayon UOX100

= Crayon UOX140

= Tube-guide

= Modérateur
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In this study, we decided to use the configuration of type A in order to maximize the gadolinium content. All 

fission rates are normalized to the sum of the 17 fuel pins fission rates labelled by ’’ in Figure 4. Table 2 lists the 

measured integral data and associated experimental technique for the 3 different configurations considered 

here.  

 

  

 
Figure 4. Central assembly of CAMELEON : “1Gd” rod and “12D3” 12 gadolinium rods. The J09 fuel pin used 

for this study is located in front of the central water hole. 

 

Table 2. Studied configurations and observables. 

Configuration Integral measurement Experimental technique 

Tout UO2 Residual reactivity Doubling time 

1-Gd-A Reactivity effect (versus Tout UO2
 config) Doubling time difference 

12D3-A 
Residual reactivity 
Radial fission rate 

Doubling time  
γ-spectrometry 

 

In the next section, we discuss the technological parameters and their associated covariances to be 

propagated to the core level. 

6.1.1 Technological parameter identification and uncertainty propagation 

The list of selected technological parameters that influence integral data is presented in Table 3. All these 
parameters are supposed to be independent (i.e., the covariance matrix is diagonal). The propagated 
uncertainties onto integral observables are then obtained by performing a quadratic sum of direct parameter 
perturbations using the sensitivity vectors calculated by the APOLLO3® neutronic code and a 2D spatial 
description. The resulting integral uncertainties are given in Table 4. 
 
Most influent parameters are listed in bold: 235U enrichment, external radius of fuel and cladding, lattice pitch 
and UO2 impurities. UO2+Gd technological parameters have a low propagated uncertainty on integral quantities 
because of their low number (only 12 Gd pins versus a total of 1700 UO2 fuel pins). 
 
Not mentioned in Table 4, the technological uncertainty for a reactivity effect due to a small modification (from 
“Tout UO2” configuration to a gadolinated configuration) is vanishing to zero. 
 
 
 
 

= Crayon UOX100 = Tube-guide= Crayon UOX-Gd
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Table 3. The list of selected technological parameters, and 1σ associated uncertainties. 

CAMELEON technological parameters 1σ uncertainty (absolute / relative) 

UOx fuel pin 
type 100 

Isotopic enrichment 235U 0.02 [w/o unit] 

Fuel density 0.0075 [w/o unit] 

Oxygen Stoichiometry in UO2 0.20% 

Fuel impurities 1 ppm of B (5) 

Fuel radius 0.01 [cm] 

Cladding external radius  0.01 [cm] 

UOx fuel pin 
type 140 

Isotopic enrichment 235U 0.002 [w/o unit] 

Fuel density 0.0075 [w/o unit] 

Oxygen Stoichiometry in UO2 0.20% 

Fuel impurities 1 ppm of B (1) 

Fuel radius 0.03 (6) [cm] 

Cladding external radius  0.01 [cm] 

UOx+Gd 7% fuel 
pin 

(type A) 

Isotopic enrichment 235U 0.0005 [w/o unit] 

Fuel density 0.0075 (7) [w/o unit] 

Oxygen Stoichiometry in UO2 0.20% 

Fuel impurities 0.10% 

Fuel radius 0.20% 

Ratio 160Gd / 238U 12.5 [ppm] 

General 
parameters 

Lattice pitch 0.002 [cm] 

Water density 0.01% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
(5) The level of impurities in the fuel is neutronically equivalent to a few ppm of boron. 
(6) This value is obtained by observing the measurements standard deviation. 
(7)  This UOx value is arbitrary given to UOx+Gd fuel pins. 
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Table 4. keff and fission rate technological uncertainties. 

CAMELEON technological parameters 

Technological uncertainty 

keff (12D3-A) 
[pcm] 

Fission rates (12D3-A) 
min / J09 / max 

[%] 

UOx fuel pin 
type 100 

Isotopic enrichment 235U 80 0.22 / 0.31 / 0.34 

Fuel density 4 0.02 / 0.03 / 0.04 

Oxygen Stoichiometry in UO2 2 0.00 / 0.01 / 0.01 

Fuel impurities 62 0.13 / 0.16 / 0.16 

Fuel radius 44 0.20 / 0.31 / 0.35 

Cladding external radius  53 0.30 / 0.35 / 0.42 

UOx fuel pin 
type 1040 

Isotopic enrichment 235U 4 0.01 / 0.01 / 0.01 

Fuel density 4 0.00 / 0.01 / 0.01 

Oxygen Stoichiometry in UO2 0 0.00 / 0.00 / 0.00 

Fuel impurities 33 0.05 / 0.09 / 0.09 

Fuel radius 66 0.01 / 0.06 / 0.06 

Cladding external radius  31 0.00 / 0.01 / 0.02 

UOx+Gd 7% 
fuel pin 
(type A) 

Isotopic enrichment 235U 0 0.00 / 0.00 / 0.00 

Fuel density 1 0.00 / 0.00 / 0.00 

Oxygen Stoichiometry in UO2 0 0.00 / 0.00 / 0.00 

Fuel impurities 4 0.00 / 0.00 / 0.00 

Fuel radius 0 0.01 / 0.02 / 0.04 

Ratio 160Gd / 238U 0 0.00 / 0.00 / 0.00 

General 
parameters 

Lattice pitch 83 0.37 / 0.37 / 0.50 

Water density 2 0.01 / 0.01 / 0.01 

Total uncertainty 173 pcm 0.69% / 0.70% / 0.73% 

 

6.1.2 Correlation between integral data 

Technological correlation matrix of 2 experimental data for the CAMELEON program is obtained by using 
equation 5.5 and is presented in Table 5. 
 

Table 5. CAMELEON experimental correlation coefficients. 

 keff (12D3-A) Δρ (1-Gd-A) 
J09 fission rate 

(12D3-A) 

keff (12D3-A) 1.000 0.637 0.445 

Δρ (1-Gd-A)  1.000 0.000 

J09 fission rate (12D3-A)   1.000 
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The physical meaning of this matrix is interesting: residual reactivity measurement is not that much correlated 
to the measurement of gadolinium worth (0.4), meaning that these 2 observables depend differently on 
technological parameters (small collinearity of sensitivity vectors). 
 

6.2 Experiments useful for sodium fast reactors  

Validation of nuclear data for advanced sodium fast reactors requires assessing the library performance for fast 
spectrum experimental benchmarks. Taking as reference systems both the ESFR core design (European Sodium 
Fast Reactor) and ASTRID core design, an analysis of ICSBEP and IRPhE databases has been performed to find 
experiments useful for validation [García-Herranz 2024]. As a result of this analysis, a set of 34 integral 
experiments of ICSBEP have been identified as able to provide relevant information for SFR. They correspond to 
benchmarks with plutonium (PU) and mixed plutonium-uranium (MIX) fissile materials, with a physical form of 
compound (COMP) or metal/alloy (MET) and with a FAST neutron spectrum. The following correlations have 
been found for these cases: 

 Correlation between MCF001 and MCF002 is provided in DICE (0.66). However, no quantitative 

correlation is given with other ANL evaluations (MCF005 and MCF006), although the existence of a 

qualitative correlation is indicated (+). Furthermore, as stated before, DICE’s correlation value seem to 

be taken from [Palmiotti 2014]. However, in [Ivanova 2014] and [NEA 2013b] an entirely different value 

for the same correlation (0.13) is provided.  

 Correlation between MCF001 and PMF033-001 is provided; however, neither quantitative  correlation 

nor qualitative is given with PMF-001, -002, -005, -006, -008, -044 in LANL; with PMF-003 and -017 in 

LLNL; with PMF-037 at CML in Rocky Flats; with PMF-021, -025, -029, -030, -032, -035 cases in VNIIEF, 

Russia.  

 Correlations between MCF-001 and -002 with MMF-011-001 and -002, -003 and -004 are included.    

Considering the previous information, an analysis of the MCF experimental benchmarks carried out at ANL (from 
MCF001 to MCF006) has been performed. In the cases where correlations are available in DICE, the obtained 
correlation coefficients will be compared to them.  

These experiments were performed at the ZPR facility of Argonne National Laboratory (ANL) between 1966 and 
1971. The facility consisted of a large matrix made of steel that could be filled with drawers containing different 
materials, either nuclear fuel or other materials to simulate coolants, reflectors or other structural components 
of fast reactors. More specifically, the matrix was made of two parts, one fixed and the other movable, and 
criticality was achieved by joining both.  

For this, we have used the Monte Carlo methodology described in section 5.2. We have first carried out an 
analysis of the benchmark documentation to select the correlated experimental parameters with a significant 
impact on the uncertainty in keff (section 6.2.1). Once these parameters are identified, random perturbations of 
these parameters are performed in the input files, taking into account the correlation (i.e., if a certain parameter 
is considered to be correlated between two different experiments, the same perturbation is performed in the 
two experiments, if not, it is perturbed independently). The neutronic calculations have been performed with 
the MCNP6.2 code [LANL 2017] and the JEFF-3.3 library [Plompen 2020] processed with the NJOY-21 code [NJOY 
2021]. More details about the calculation procedure and the results obtained are provided in section 6.2.2.  

One difficulty that has been found during the calculations is that the MCNP inputs provided with ICSBEP are 
homogenized in a reduced number of regions, e.g. core (inner and outer), blanket, reflector… This makes it an 
issue to find the correlations between two experiments having some shared components in one of these regions 
and onot shared in another region, e.g. two different types of fuel. In these cases, a guess is made about which 
is the dominant component, and the parameter will be considered correlated or not accordingly.  

Some characteristics of the selected experiments are summarized in Table 6. Overall, it can be observed that 
two main types of Pu fuel, from two different manufacturers (Sefor and Dow/Numec) were used in the core: 



 

 

22 

 

 

 A mixture of Pu-U-Mo fuel from Sefor (approx. 91% 239Pu and 9% 240Pu) and Pu-Al fuel (95% 239Pu, 5% 
240Pu). Used in the MCF003-001/002 experiments, carried out in 1966/67.  

 Pu-U-Mo fuel from Dow and Numec, with approx. 87% 239Pu and 11% 240Pu. Used in all remaining 

experiments, all carried out after 1968. In MCF-004-001 only fuel from Dow was used, but in our 

calculations, we have made no distinctions between this case and the others. Furthermore, some Pu-Al 

fuel was also used in the core periphery of MCF001-001, but it is expected to have a small impact on the 

reactivity.   

Furthermore, the MCF002-001 and MCF003-002 experiments were partly loaded (innermost part of the cores) 
with fuels with higher 240Pu content. 

Regarding the uranium fuel, all the uranium present in these systems was in the form of depleted uranium. 
However, it was present in three different chemical forms: as part of the Pu-U-Mo fuel, as UMET and U3O8.   

 

 
Table 6. Main characteristics of the MIX-COMP-FAST benchmarks considered in this study. 

Benchmark Year Description 

MCF001-001 
ZPR-6/7 loading 12 

1970 Core: Pu-U-Mo (87% 239Pu, 11% 240Pu, 0.2% 235U), depleted U3O8, Na, Fe2O3 
Core boundary: Pu-Al (95% 239Pu, 5% 240Pu), ... 
Reflector: depleted U3O8 

MCF002-001 
ZPR-6/7 loading 99 

(high 240Pu) 

1970-
1971 

Inner core: Pu-U-Mo (69% 239Pu, 26% 240Pu, 0.2% 235U), depleted U3O8, Na, 
Fe2O3 
Outer core: Pu-U-Mo (87% 239Pu, 11% 240Pu, 0.2% 235U), depleted U3O8, Na, 
Fe2O3 
Core boundary: Pu-Al (95% 239Pu, 5% 240Pu) 
Reflector: depleted U3O8 

MCF003-001 
ZPR-3/48 

1966 Core: Pu-U-Mo (91% 239Pu, 9% 240Pu, 0.2% 235U), Pu-Al (95% 239Pu, 5% 240Pu), 
depleted UMET, Na, graphite 
Blanket: depleted UMET, Al 

MCF003-002 
ZPR-3/48B 

1967 Inner core: Pu-U-Mo (91% 239Pu, 9% 240Pu, 0.2% 235U), Pu-Al (75% 239Pu, 22% 
240Pu), depleted UMET, Na, graphite 
Outer core: Pu-U-Mo (91% 239Pu, 9% 240Pu, 0.2% 235U), Pu-Al (95% 239Pu, 5% 
240Pu), depleted UMET, Na, graphite 
Blanket: depleted UMET 

MCF004-001 
ZPR-3/56B 

1968-
1969 

Core: Pu-U-Mo (87% 239Pu, 11% 240Pu, 0.2% 235U), depleted U3O8, Na, Na2CO3, 
Fe2O3 
Reflector: Ni, Na, Al 

MCF005-001 
ZPR-9/31 

1976 Core: Pu-U-Mo (87% 239Pu, 11% 240Pu, 0.2% 235U), depleted UMET, Na, graphite 
Blanket: depleted UMET, Na, graphite 
Reflector: steel  

MCF006-001 
ZPPR-2 

1970-
1971 

Core: Pu-U-Mo (87% 239Pu, 11% 240Pu, 0.2% 235U), depleted U3O8, Na, Fe2O3 
Blanket: depleted U3O8, depleted UMET, Na, Na2CO3, Fe2O3, steel (304) 
Reflector: steel 
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6.2.1 Correlated parameter identification 

To determine which parameters have the highest impact on the uncertainty in keff, we have used the uncertainty 
information provided in section 2 of the benchmark description. We have made no dedicated calculations for 
this purpose. From this information, we have been able to determine four major components that jointly are 
responsible for about 90% of the uncertainty in keff or higher: the mass of Pu fuel, the mass of U, the 235U content 
of U, the matrix tube pitch and the mass of iron in the matrix. The values are summarized in Table 7.  

In the benchmark documentation, a very detailed description is included about the different components of the 
uncertainty in keff. For this work, we have made some simplifying assumptions: 

1) The uncertainty in keff due to Pu is mainly due to the uncertainty in Pu mass, which is stated to be 0.15%. 

This uncertainty is considered to be fully systematic and hence fully correlated between experiments 

sharing the same type of fuel. The uncertainty in the Pu composition has not been considered. Four 

types of Pu fuel have been considered: Pu from Sefor, Pu from Dow/Numec and the two fuels with 

higher 240Pu content that were loaded in the inner cores of MCF002-001 and MCF003-002.  

2) The dominant sources of uncertainty in the uranium composition are the total mass of uranium (0.15%) 

and the uncertainty in the amount of 235U (0.22% ± 0.01%). These apply to the U in the Pu-U-Mo plates, 

the U3O8 plates and the UMET plates. In any case, the impact of the Pu-U-Mo plates on keff is the smallest 

of these three materials, so the uncertainty in the uranium composition is considered correlated for 

systems containing either U3O8 plates or the UMET plates, and uncorrelated between the two systems 

containing U3O8 and UMET. Only MCF006-001 contain both, but since the impact of U3O8 seems to be 

dominant, is considered as having only U3O8. 

3) The major contributor to the uncertainty due to the iron & steel components comes from the mass of 

the matrix tubes, which are assumed to be common to all experiments and therefore to be fully 

correlated. The uncertainty in the iron mass of the of the matrix is stated to be 2%. Furthermore, for 

simplicity, only the composition of iron isotopes is changed.  

4) The matrix tube pitch is 2.175 ± 0.001 in. in the X-direction and 2.277 ± 0.001 in. in the Y-direction. We 

have considered an uncertainty of 0.05% for this parameter. This source of uncertainty will be fully 

correlated between all experiments in the ZPR facility.. In our simulations, the increase of the 

dimensions is compensated by a decrease in the cell density, so that the total masses of the different 

components in the system remain constant.  

A further limitation is that the input files provided in the benchmarks are homogenized in a small number of 
regions, which forces us to make some modifications within every one of these regions. In Table 8, it is presented 
in a summarized form the characteristics considered to be shared and not between the six experiments 
considered.  
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Table 7. Main contributors to the uncertainty in keff in the MCF001-MCF006 benchmark experiments, 
according to the benchmark documentation (section 2). 

 MCF001 
-001 

MCF002 
-001 

MCF003 
-001 

MCF003 
-002 

MCF004 
-001 

MCF005 
-001 

MCF006 
-001 

TOTAL 0.08674 0.0855 0.0687 0.0680 0.0674 0.1116 0.0655 

Pu ?8 0.0468 0.0305 0.0285 0.0436 0.0472 0.0446 

U in U3O8  
(core & reflector) 

0.04067 0.04075 --- --- 0.0171 --- 0.0339 

U in DU plates --- --- 0.0421 0.0421 --- 0.0854 0.0095 

U in Pu-U-Mo fuel 0.02393 0.0131 0.0071 0.0073 0.0137 0.0129 0.0135 

Total U  0.04719 0.0428 0.0427 0.0427 0.0219 0.0864 0.0377 

Matrix tube pitch 0.04048 0.404 0.0318 0.0318 0.0321 0.0517 0.0276 

Iron & steel 
(matrix tubes & drawers) 

0.0245 0.0235 0.0088 0.0088 0.0083 0.0031 0.0078 

Iron & steel 
(cans, plates & others) 

0.0082 0.0032 0.0005 0.0005 0.0047 0.0012 0.0037 

Total iron & steel 0.0258 0.0237 0.0088 0.0088 0.0095 0.0033 0.0086 

U + Pu + pitch + iron ? 0.0788 0.0620 0.0610 0.0592 0.1113 0.0652 

% of total ? 92% 90% 90% 88% >99% >99% 

 

 
Table 8. Summary of shared (correlated) and independent (uncorrelated) parameters in the MCF001-

MCF006 benchmark experiments.  

 MCF001 
-001 

MCF002 
-001 

MCF003 
-001 

MCF003 
-002 

MCF004 
-001 

MCF005 
-001 

MCF006 
-001 

Pu 
mass 
(±0.15
%) 

Pu_DOW 

Pu_DOW 
(Pu_21_ic 

in the inner 
core) 

Pu_SEFOR 

Pu_SEFOR 
(Pu_32_ic 

in the inner 
core) 

Pu_DOW Pu_DOW Pu_DOW 

U235 
conte
nt 
(±5%) 

U_comp_U
3O8 

U_comp_U
3O8 

U_comp_U
MET 

U_comp_U
MET 

U_comp_U
3O8 

U_comp_U
MET 

U_comp_U
3O8 

U 
mass 
(±0.15
%) 

U_mass_U3
O8 

U_mass_U3
O8 

U_mass_U
MET 

U_mass_U
MET 

U_mass_U3
O8 

U_mass_U
MET 

U_mass_U3
O8 

Fe 
mass 
(±2%) 

Fe_mass Fe_mass Fe_mass Fe_mass Fe_mass Fe_mass Fe_mass 

Matrix 
tuve 
pitch 
(±0.05
%) 

pitch pitch pitch pitch pitch pitch pitch 

                                                 
8 This information is omitted in the benchmark documentation (likely typo).  
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6.2.2 Correlation between integral data 

The results of the simulations are presented in Table 9. For comparison, the values proved in DICE are presented 
in Table 10. The statistical uncertainty, calculated with the formulae obtained in appendix 1, are also listed in 
the tables. In Figure 5, a couple of examples (with high and low degree of correlation) of the dispersion in the 
keff values, from which the correlation coefficient is calculated, are presented. 
 
The first conclusion that is apparent is that the experiments can be classified in two major groups regarding the 
correlations: one comprising all the experiments with Pu fuel from Dow/Numec (MCF001-001, MCF002-001, 
MCF004-001, MCF005-001 and MCF006-001) and the other comprising all experiments with Pu fuel from Sefor 
(MCF003-001 and MCF003-002). These results were to be expected, however, given the assumption that the 
mass of Pu was fully correlated among all systems sharing the same type of Pu fuel, but uncorrelated between 
the systems with different types of fuel. Notice that the correlation between these two groups is only due to the 
steel matrix (Fe mass and matrix pitch), that have been considered to be common for all the seven systems 
investigated.  
 
Within the first group of systems, MCF005-001 presents somewhat lower correlations with the other systems, 
which can be attributable to the fact that this is the only system with depleted uranium in the form of UMET, the 
others having all U3O8. At the same time, this can also explain the higher correlations with MCF003-001 and 
MCF003-002, also featuring UMET. It is also worth remarking the relatively low correlation between MCF004-001 
with MCF001-001 and MCF006-001, in spite of these three systems having the same set of correlated 
parameters.   
 
On the other hand, the effect of replacing the inner core with fuels with higher 240Pu content, and hence 
considered to be uncorrelated, does not seem to have a relevant impact between the correlations. Indeed, a 
high level of correlation is observed both between MCF001-001 and MCF002-001 and between MCF003-001 
and MCF003-002.  
 
Regarding the comparison with the correlation data available in DICE (as stated above, likely taken from Table 
XVI of [Palmiotti 2014]), it can be observed that we have found similar values for the correlation between 
MCF003-001 and MCF003-002 (0.83 vs. 0.85), as well as for the correlations between these systems and 
MCF004-001 (0.18 vs. 0.21) and between MCF002-001 and MCF003-001/MCF003-002 (0.05 and 0.01 vs 0.07 
and 0.06). On the other hand, we have found significantly higher values than the ones listed in DICE for the 
correlations between MCF001-001 and MCF001-002 (0.87 vs. 0.66) and between MCF001-001/MCF002-001 and 
MCF004-001 (0.76/0.68 vs. 0.18 and 0.12). In Table XV [Palmiotti 2014], a list of the uncertainty components is 
given, but no information about the correlations between systems is provided, which does not allow us to 
investigate the reasons for these discrepancies.   
 
In [Ivanova 2014] and [NEA 2013b], a much lower value for the correlation between MCF001-001 and MCF002-
001 is provided (0.134). In [Ivanova 2014], this low value is explained by the assumption of considering as 
dominant the uncertainty introduced by the homogenization of the calculational model. Once again, this 
stresses the importance of keeping track of the assumptions made regarding correlated parameters when 
calculating the experimental corrections between benchmark experiments.  
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Table 9. Correlations between keff of the MCF set of benchmark experiments calculated in this work. 

  1 2 3 4 5 6 7 

1 
MCF001-

001 
1       

2 
MCF002-

001 
0.869 

± 0.010 
1      

3 
MCF003-

001 
0.111 

± 0.022 
0.050 

± 0.023 
1     

4 
MCF003-

002 
0.091 

± 0.023 
0.011 

± 0.025 
0.829 

± 0.014 
1    

5 
MCF004-

001 
0.755 

± 0.015 
0.675 

± 0.018 
0.180 

± 0.025 
0.182 

± 0.026 
1   

6 
MCF005-

001 
0.650 

± 0.016 
0.575 

± 0.018 
0.230 

± 0.022 
0.231 

± 0.024 
0.772 

± 0.016 
1  

7 
MCF006-

001 
0.889 

± 0.009 
0.820 

± 0.012 
0.124 

± 0.022 
0.107 

± 0.024 
0.814 

± 0.014 
0.725 

± 0.015 
1 

 

 
Table 10. Correlations between keff of the MCF set of benchmark experiments according to DICE.  

  1 2 3 4 5 6 7 

1 
MCF001-

001 
1       

2 
MCF002-

001 
0.66 1      

3 
MCF003-

001 
--- 0.07 1     

4 
MCF003-

002 
--- 0.06 0.85 1    

5 
MCF004-

001 
0.18 0.12 0.21 0.21 1   

6 
MCF005-

001 
--- --- --- --- --- 1  

7 
MCF006-

001 
--- --- --- --- --- --- 1 
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(a) MCF002-001 vs. MCF001-001 (b) MCF003-001 vs. MCF001-001 

Figure 5. Correlations between the keff of two of the pairs of systems considered in this study. The systems 
have correlations in all parameters considered in Table 8, except the fuel in the inner core. The systems on 

the right only have correlations in the iron mass and the matrix tube pitch. 

 

 
  



 

 

28 

 

 

6.3 ASPIS Iron-88 shielding benchmark  

The ASPIS Iron-88 benchmark experiment [Wright 1993, Avery 1995, Milocco, 2015] was performed in 1988 in 
the ASPIS shielding facility installed next to the Nestor reactor at Winfrith to study the neutron transport for 
penetrations up to 67 cm in steel. The experimental array irradiated in ASPIS comprises a fission plate made of 
93% enriched U-Al alloy driven by thermal neutrons from the NESTOR reactor and installed in front of the shield 
made from 13 mild steel plates each 5.1 cm thick, and a deep backing shield manufactured from mild and 
stainless steel. Absolute source strength and spatial distribution were determined by fission product counting 
and 55Mn(n,γ) measurements over the X-Y front surface. However, the uncertainties of these measurements 
were not reported. Au, Rh, In, S and Al activation foils were placed in ~7.4-mm air gaps between each slab 
component along the fission plate axis at several shield thicknesses up to ~67 cm. 
 
Detailed information on the systematic and statistical uncertainties of the measurements was reported by the 
experimentalists and is shown in Table 11 [Wright 1993, Avery 1995]. Systematic and statistical uncertainties 
are well separated and characterised in the reports and allowed to construct the correlation matrix of the 
measured reaction rates partly presented in Table 12 (only a selected subset is shown for demonstration here). 
On the other hand, no information is available on the background correction uncertainty and thermal flux 
leaking from the Nestor reactor, which may be non-negligible for the gold foil measurements, uncertainties in 
in the foil positioning and arrangement, and in the geometry descriptions and modelling, material compositions 
and dimensions. 
 
 

 Diameter Thickness Mass Uncertainty (%) 
Detector (mm) (mm) (g) Systematic 

calibration 
Counting 
statistics 

Power Total 

197Au(n,) 12.7 0.05 0.12-0.13 0.9 1 4 4.2 
103Rh(n,n') 12.7 0.015 0.20 3.0 1 - 1.5 4 5.1 - 5.2 
115In(n,n') 38 1.63 12.79 1.9 1 - 1.7 4 4.5 - 4.7 
32S(n,p) 
pressed pellet 

38.1 2.41 5 5.0 1 - 1.5 4 6.5 

32S(n,p) cast 
pellet  

51 5.6 22 5.0 1 - 5.7 (up to 
20) 

4 6.5 - 8.6 
(up to 21) 

27Al(n,α) 50 3.1 16.72 2.2 1 - 1.3 4 4.7 

 
Table 11. Components of the measurement uncertainties (1σ) for the reactions measured in ASPIS Iron-88 

benchmark. 

 
In the evaluation of the covariance matrix of these measurements presented in Table 12 [Kodeli 2018], the 
following assumptions were made: 

 Power normalisation uncertainty is assumed to be correlated over all reaction rates. The justification for 
this assumption is though partly questionable since there is no evidence that all the foils were irradiated 
in a single or in several experimental campaigns; 

 Calibration uncertainty is a component correlated over all detector positions, but uncorrelated with 

other reaction rates. In practice, there may be some correlation between the calibration uncertainties 

of the different detectors; 

 Statistical uncertainty component is (of course) the uncorrelated component of the uncertainty. 

 Other sources of uncertainty than in the calibration, power and counting statistics were neglected. 
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In addition, the covariance matrix relative to the ratios of the measured reaction rates with respect to the 1st 
measurement position was prepared for the purpose of the WPEC WG39 activities [Salvatores 2014, WPEC39]. 
The matrix is presented in Table 13 for the same subset of detectors/foil positions as above. It can be observed 
that, with the four above assumptions, the use of reaction rate ratios significantly reduces the uncertainties and 
un-correlates the covariance matrix. A drawback is that dividing the reaction rate of each detector by the 1st 
reaction rate position of the same reaction means that the effective normalisation factor becomes different for 
each detector and reaction. This may lead to the loss of information on the spectra distribution. In the case of 
ASPIS Iron-88 the effect is particularly strong for the Al(n,α) reaction with the observed C/E values around 1.35. 
Adjustment based on the Table 13 type of covariances may therefore not be able to correct for the 
possible/probable inconsistencies for this high energy reaction. The four assumptions may be also not entirely 
realistic for the adjustment applications. 
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Au Rh In S Al 
 

Pos. 
 

A7 A11 A14 A7 A14 A7 A11 A7 A12 A14 A7   
1(%) 4.2 4.2 4.2 5.1 5.1 4.5 4.7 6.5 6.5 8.6 4.7 

Au A7 4.2 1.00 0.944 0.944 0.744 0.744 0.835 0.799 0.585 0.585 0.442 0.799  
A11 4.2  1.00 0.944 0.744 0.744 0.835 0.799 0.585 0.585 0.442 0.799  
A14 4.2   1.000 0.744 0.744 0.835 0.799 0.585 0.585 0.442 0.799 

Rh A7 5.1    1.000 0.962 0.691 0.662 0.484 0.484 0.366 0.661  
A14 5.1     1.000 0.691 0.662 0.484 0.484 0.366 0.661 

In A7 4.5      1.000 0.911 0.544 0.544 0.411 0.743  
A11 4.7       1.000 0.520 0.520 0.393 0.711 

S A7 6.5        1.000 0.976 0.738 0.520  
A12 6.5         1.000 0.738 0.520  
A14 8.6          1.000 0.393 

Al A7 4.7           1.000 

 
Table 12. ASPIS Iron-88 covariance matrix for the measured reactions rates, including the power 

normalization, detector calibration and statistical uncertainties. The covariance matrix is constructed so as 
to contain the total standard deviation (including systematic plus stochastic uncertainties) in the diagonal, 

and the systematic part of the uncertainty in the off-diagonal positions.  The power normalization 
uncertainty was assumed to be completely correlated among the detectors. Note that only the upper part of 

the (symmetric) matrix is given. 

 

 

 
    

Au Rh In S 
 

Pos. 
 

A7 
/A2 

A11 
/A2 

A14 
/A2 

A7 
/A2 

A14 
/A2 

A7 
/A2 

A11 
/A2 

A7  
/A2 

A12 
/A2 

A14 
/A2   

1(%) 5.9 5.9 5.9 7.2 7.2 6.4 6.5 1.4 1.4 5.8 

Au A7/A2 1.4 1.00 0.50 0.50 0 0 0 0 0 0 0 

A11/A2 1.4  1.00 0.50 0 0 0 0 0 0 0  
A14/A2 1.4  

 
1.00 0 0 0 0 0 0 0 

Rh A7/A2 1.4    1.00 0.50 0 0 0 0 0 

A14/A2 1.4     1.00 0 0 0 0 0 

In 
 

A7/A2 1.4      1.00 0.49 0 0 0 

A11/A2 2.0       1.00 0 0 0 

S 
 

A7/A2 1.4        1.00 0.50 0.12 

A12/A2 1.4         1.00 0.12 

A14/A2 5.8         
 

1.00 

 
Table 13. ASPIS Iron-88 covariance matrix for the ratios of the measured reactions rates. Note that the 

correlated components of the uncertainty, such as the power normalization, detector calibration 
uncertainties, were supposed to cancel out. Note that only the upper part of the (symmetric) matrix is given. 
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6.4 VENUS-3 shielding benchmark (power distribution) 

The VENUS-3 benchmark [Hondt 1990, Leenders 1988] was designed essentially to test refuelling patterns 
reducing the radiation exposure to the reactor pressure vessel and the ability of the fluence-rate synthesis 
procedures used at the time based on 2D/1D calculations to predict adequately 3D geometry effects. 
 
The VENUS-3 power distribution was fully measured only at two (out of 14) axial levels [Abderrahim 1999], 
namely at the axial level corresponding to the mid-plane of the lower-PLSA (Partial Length Shielded Assembly) 
part of the core loading, and at the one corresponding to the mid-plane of the upper part of the core loading. In 
addition to the two XY radial distributions, the full axial power distribution was measured at 374 fuel pin 
locations, out of the total of 639 fuel pins comprised in the 1/4 of the reactor core.  
 
In order to establish a complete 3D map of the power distribution in the VENUS core, an extrapolation 
procedure, based on the RECOG-ORNL code [Begovich 1977] was used back in 1997 when the VENUS-3 
benchmark was evaluated for the purpose of an international inter-comparison exercise and the SINBAD 
database. RECOG-ORNL is a general-purpose pattern recognition code. Various methods for data analysis, pre-
processing and display of data, unsupervised and supervised learning are available in the code. Hence, the data 
provided in this benchmark contain the measured values, where available, and RECOG predicted values 
elsewhere. Relative nuclear power distribution, normalised to the core averaged power of one fission per second 
per active pin, are given for each fuel pin position and for 14 axial levels (see examples in Figure 6).  
 
This procedure permitted at the same time to detect some suspicious or faulty values, transcription errors, as 
well as to give an idea of the accuracy of the neutron flux. This accuracy was evaluated in the following way: 
where the measured values were available the 'uncertainties' were determined as the % difference between 
the neutron source values calculated by RECOG code and the measured values. Elsewhere the uncertainty of 
the extrapolation procedure in RECOG was estimated to ±5% [NEA SINBAD].  
 
To verify the results obtained at the time and to test the possible use and performances of the new ML tools, 
the interpolation procedure has been recently re-evaluated using modern ML methods [Berger 2024]. Different 
algorithms have been considered, such as Pattern recognition, Linear regression, Lasso regression, Ridge 
regression, Kriging, K-Nearest Neighbours (KNN), Support Vector Machine, Random Forest and Neural Networks 
(NN, or Artificial Neural Network, ANN). Predictions of different algorithms are compared in terms of 
performance parameters to obtain conclusions on the method performances. The following performance 
criteria have been used: 
 

- Mean absolute error in % 

𝑀𝐴𝐸 =
100%

𝑁
 ∑ |

𝑦𝑒𝑥𝑝,𝑖−�⃗⃗�𝑖

𝑦𝑒𝑥𝑝,𝑖

|𝑁
𝑖=1         (6.1) 

- Mean square error (MSE) 

𝑀𝑆𝐸 =
1

𝑁
 ∑ (𝑦𝑒𝑥𝑝,𝑖 − �⃗�𝑖 )2𝑁

𝑖=1          (6.2) 

 

- Prediction coefficient  

𝑅2 = 1 − 
 ∑ (𝑦𝑒𝑥𝑝,𝑖−�⃗⃗�𝑖 )2𝑁

𝑖=1

 ∑ (𝑦𝑒𝑥𝑝  
̅̅ ̅̅ ̅̅ ̅̅

−�⃗⃗�𝑖 )2𝑁
𝑖=1

               (6.3) 

The accuracy of the power map in the reactor core and the uncertainties of the extrapolation procedure are 
compared for the different ML methods used. Furthermore, as a key objective, the correlations between the 
measurements, and, in particular, the correlations among the corresponding uncertainties are studied using the 
predictions of different fitting algorithms. Predictions of different algorithms are compared and allow to 
evaluate the method performances in terms of nominal values, average absolute and quadratic error, prediction 
coefficients, residues, and covariance matrices. First preliminary results are presented in Table 14 and Table 15, 
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and Figure 7 and Figure 8. The results indicate good general performances of some of the methods (except linear 
regression, Polynomial and Neural Networks) and a progress compared to the Pattern recognition algorithm 
used in the past. As shown in Table 15 the inter-/extrapolated values calculated using the Kriging, KNN, Gradient 
Boosting and Random Forest methods agreed well (on the average within less than 1%) with the predictions 
obtained using the Pattern Recognition technique. The work on the elaboration and testing of the covariance 
matrix is still ongoing and the results are encouraging. 
 
 
 
 
 
 
 

  
(a) Axial level 1 (a) Axial level 2 

 
Figure 6. VENUS-3 radial relative power distributions at two axial levels 1 and 9. 
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Table 14. Summary of the performances of different ML models in terms of mean, maximum and minimum 

absolute errors in %. 

 

 
 

 
Table 15. Mean, maximal and minimal differences in the predicted power distribution of different ML 

models with respect to the Pattern Recognition method. 
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(a) R2 

 

 
(b) Mean square error (MSE) 

 
Figure 7. Prediction parameter R2 and Mean square error (MSE) for different ML methods. 
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(a) R2 

 

 
(b) Mean square error (MSE) 

 
Figure 8. Evolution of the Prediction parameter R2 and Mean square error (MSE) with the fraction of training 

sets used (Gradient Boosting method). 
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7 Summary & conclusions 

Correlations between the uncertainties in experimental parameters of criticality benchmark experiments (and 
other reactor physical parameters) are known to exist and to play an important role in some important 
applications, such as criticality safety assessment and nuclear data adjustment. Although methodologies to 
determine these correlations have been developed, both deterministic and Monte Carlo, no systematic and 
comprehensive study of these correlations has been performed up to now. The most important source presently 
available are the data included in OECD/NEA DICE database, and it contains information about experimental 
correlations only for 93 cases out of the more than 5000 included in the ICSBEP database. In this work, we 
present the results of some additional calculations: between two configurations of the EOLE reactor (calculated 
with the deterministic methodology) and between seven configurations of the ZPR reactor (MIX-COMP-FAST) 
included in the ICSBEP database (calculated with the Monte Carlo methodology). Furthermore, an example of 
the evaluation of the correlation matrix for a set of activation-foil measurements carried out during a shielding 
experiment included in the SINBAD database (ASPIS Iron-88) is also provided.  
 
The users have to be aware that the evaluation of the experimental correlations is to a large extent based on 
expert judgment (both with the deterministic and Monte Carlo methodologies), and information about the 
hypotheses made in this respect is not always accessible. Furthermore, it is often difficult to extract reliable 
information on the systematic and stochastic uncertainties for the older experiments. In particular, the DICE 
database includes no information about the sources of the experimental correlation values listed in it, which 
makes it very difficult to reproduce these values. Extreme caution is therefore required in the use of this 
information in e.g. data adjustment analysis. Using the ratios of strongly correlated data (such as reaction rates, 
keff, etc.) largely reduces or even eliminates the systematic uncertainties and can lead to considerable reduction 
in total uncertainties.  
 
Another important aspect to take into account, when applying the Monte Carlo methodology to determine the 
experimental correlations, is that statistical uncertainties have to be calculated and reported. A formula to 
propagate the uncertainties in two sets of statistical variables to their correlation coefficient has been obtained 
and is presented in Appendix 1.  
 
Finally, an example (VENUS-3 shielding benchmark) of the potential benefits of the use of machine learning 
techniques in the interpretation of experimental uncertainties and correlations is also provided in this work. 
Physical interpretation of the results obtained is a major challenge when applying these techniques. 
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Appendix 1. Propagation of statistical errors in the MC methodology 

The Pearson’s correlation coefficient of two sets of data (x1, …, xn) and (y1, …, yn) is defined as: 

𝜌𝑥𝑦 =
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If we assume that both data sets xi and yi are affected by uncertainties, and that these uncertainties are 

independent (i.e. non-correlated), then it is possible to apply the the classical first-order error propagation 

formula to obtain the error in 𝜌𝑥𝑦: 
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To calculate the derivatives of 𝜌𝑥𝑦, let us write it in terms of the three following functions: 

𝑓𝑥𝑦(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛) = 𝑛 ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 − ∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1       (A.3) 

𝑔𝑥(𝑥1, … , 𝑥𝑛) = √𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )

2
      (A.4) 

𝑔𝑦(𝑦1, … , 𝑦𝑛) = √𝑛 ∑ 𝑦𝑖
2𝑛

𝑖=1 − (∑ 𝑦𝑖
𝑛
𝑖=1 )

2
      (A.5) 

Hence: 
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The derivatives of every one of these functions are:  
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